
Topological methods in combinatorics: ham

sandwich theorem∗

There is a sandwich, made of ham, cheese and bread. Two hungry people want
to split it. To lose no time, they wish to make a single cut with a knife so that
each of the ingredients is split equally between the two halves. It turns out this is
possible, and the result is known as the ham-sandwich theorem. It asserts that in
arbitrary dimension d it is possible to split d ingredient by a single hyperplane.

A measure µ on a set X is finite if µ(X) < ∞. A measure is Borel if all open
sets are measurable, and consequently all the sets in the σ-algebra generated by the
open sets are measurable (the sets in this σ-algebra are called Borel sets). A Borel
measure is outer regular if µ(S) = inf S⊂U

U open
µ(U).

Theorem 1 (Ham-sandwich theorem). Suppose µ1, . . . , µd are d finite outer regular
Borel measure on Rd. Then there is a hyperplane H = {x : 〈x, v〉 = r} such that the
two closed halfspace that it bounds, H+ = {x : 〈x, v〉 ≥ r} and H− = {x : 〈x, v〉 ≤
r}, satisfy

µi(H+) ≥ 1
2µ(R

d), and µi(H−) ≥ 1
2µ(R

d) for all i = 1, . . . , d.

The reason why the theorem does not assert that µi(H+) = µi(H−) =
1
2µ(R

d)
is because the measure might be concentrated on a single point, or more generally
on a finite set. Of course, if the measure of every hyperplane is zero, then µi(H+) =
µi(H−) =

1
2µ(R

d) because µi(H) = µi(H+ ∩H−) = 0.
A commonly used special case of Theorem 1 is the case where each measure µi

is a sum of point masses, in which case we obtain the following:

Corollary 2. If A1, . . . , Ad are finite sets (or even multisets) in Rd, then there is
a hyperplane H such that

|Ai ∩H+| ≥ 1
2 |Ai|, and |Ai ∩H−| ≥ 1

2 |Ai| for all i = 1, . . . , d.

Our strategy to prove Theorem 1 is to prove it for the special case of nice
measures, and use a limiting argument to deduce the general case. Measures µ
and λ are equicontinuous if µ is absolutely continuous with respect to λ and λ is
absolutely continuous with respect to µ, in other words µ(S) = 0 ⇐⇒ λ(S) = 0
for every set S.

∗These notes are from http://www.borisbukh.org/TopCombLent12/notes hamsandwich.pdf.
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Theorem 3. Suppose µ1, . . . , µd are d finite Borel measures on Rd that are equicon-
tinuous with the Lebesgue measure on Rd. Then there is a hyperplane H as in the
preceding theorem, so that

µi(H+) = µi(H+) =
1
2µi(Rd).

Proof of Theorem 3. For v ∈ Sd−1 and r ∈ R let H(v, r)
def
= {x : 〈x, v〉 = r},

H+(v, r)
def
= {x : 〈x, v〉 ≥ r} and H−(v, r)

def
= {x : 〈x, v〉 ≤ r} be the hyperplane

parametrised by (v, r) and the two closed halfspaces that it bounds.
As a function of r the function µd

(
H−(v, r)

)
is strictly increasing because

H−(r, v) ⊂ H−(v, r
′) if r < r′ and the difference H−(v, r

′) \ H−(r, v) contains
an open set, and hence has positive measure. Furthermore, µd

(
H−(v, r)

)
is a con-

tinuous function of r. Indeed, on one hand

µd

(
H−(v, r) \H−(v, r − ε)

)
→ µd

(
H(v, r)

)
= 0

because µd is absolutely continuous with respect to the Lebesgue measure and
H(v, r) has zero Lebesgue measure. On the other hand, µd

(
H−(v, r+ε)\H−(v, r)

)
→

µd

(
∅) = 0.

The preceding discussion of µd

(
H−(v, r)

)
extends to µd

(
H+(v, r)

)
, showing that

the latter is a strictly decreasing and continuous function of r. As

lim
r→∞

µd

(
H−(v, r)

)
= µd(Rd), lim

r→−∞
µd

(
H−(v, r)

)
= 0,

lim
r→∞

µd

(
H+(v, r)

)
= µd(Rd), lim

r→−∞
µd

(
H−(v, r)

)
= 0

for each v there is a unique req = req(v) such that µd(H−(v, req)) = µd(H+(v, req)).
Since µ(H− ∩ H+) = 0, we furthermore have µd(H−(v, req)) = µd(H+(v, req)) =
1
2µd(Rd). Define g : Sd−1 → Rd−1 by

g(v)i
def
= µi

(
H−(v, req)

)
− µi

(
H+(v, req)

)
.

If g is a continuous function, then by Borsuk–Ulam theorem, g vanishes for some v.
For that value of v, the hyperplane H(v, eq) satisfies the conclusion of the theorem
because g(v)0 = 0 implies µi

(
H−(v, req)

)
= µi

(
H+(v, req)

)
.

So, we need to establish continuity of g. It suffices to establish the continuity of
req(v) as a function of v and of h−(u, v) = µi

(
H−(v, r)

)
and h+(u, v) = µi

(
H+(v, r)

)
as functions of (v, r). Due to the kinship of h− and h+, we demonstrate only the
continuity of h−, for the continuity of h+ is similar.

Continuity of h−(v, r): Suppose (vn, rn) → (v, r), and we wish to show that
h−(vn, rn) → (v, r). Let χn be the characteristic function of H−(vn, rn), and χ the
characteristic function of H−(v, r). Then χn converges to χ pointwise everywhere
in Rd except H(v, r). Since H(v, r) is a null set according to µd, by the dominated
convergence theorem h−(vn, rn) =

∫
χn dµd →

∫
χdµd = h−(v, r).

Continuity of req(v): Let ∆(v, r) = h−(v, r) − h+(v, r). By the above, ∆ is a
continuous function, and so req(v) = min{r : ∆(v, r) = 0} is continuous.
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Proof that Theorem 3 implies Theorem 1. Let µ1, . . . , µd be as in Theorem 1. De-

note the Lebesgue measure on Rd by λ. Let µ
(n)
i = µi ∗ fn, where the convolution

of a measure and a function is defined by

µ ∗ f(U)
def
=

∫∫
x+y∈U

f(x) dλ(x)dµ(y) for every Borel set U, (1)

and {fn}∞n=1 is an approximate identity such that fn is everywhere positive for each
n. For instance, we may take

fn = cn exp(−n|x|2)

where the constant cn is chosen so that
∫
fn dλ = 1 (or explicitly, cn = (π/n)d/2).

On one hand, the Lebesgue measure is absolutely continuous with respect to

µ
(n)
i because for each set U the definition (1) is an integral of an everywhere

positive function on a set of positive measure. On the other hand, the mea-
sure µi is absolutely continuous with respect to the Lebesgue measure because
if λ(U) = 0, then if we integrate over x first, the inner integral vanishes, leading
to µ ∗ f(U) = 0. By the Theorem 3 for each n there is a hyperplane H(n) so that

µ
(n)
i (H

(n)
+ ) = µ

(n)
i (H

(n)
+ ) = 1

2µ
(n)
i (Rd). Our next step is to extract a convergent

subsequence of these hyperplanes, but the difficulty is that the space of all hyper-
planes in Rd is not compact. We remedy this by showing that all H(n), for n large,
meet a specific ball in Rd.

Let R be large enough so that the ball B(0, R) centred at the origin of radius R
satisfies µ1(Rd \B) < 1

8µ1(Rd). Let n be so large that
∫
|x|≥R

f(x) ≤ 1
8 . Then

µ
(n)
1

(
Rd \B(0, 2R)

)
=

∫∫
|x+y|≥2R

f(x) dλ(x)dµ1(y)

≤

[∫∫
|y|≥R

+

∫∫
|x|≥R

]
f(x) dλ(x)dµ1(y)

= µ1(Rd \B(0, R)) + µ1(Rd)

∫
|x|≥R

f(x) dx

≤ 1
4µ1(Rd).

Thus, for all large enough n the hyperplane H(n) meets the ball B(0, 2R). Indeed,

if H(n) did not meet B(0, 2R), one of the two halfspace, H
(n)
− or H

(n)
+ , would be

contained in Rd \B(0, 2R), and would have measure less than 1
4µ1(Rd).

The space of all the hyperplanes meetingB(0, 2R) is just {H(v, r) : v ∈ Sd−1, r ≤
2R}, and so is compact. Thus, there is a convergent subsequence of H(1),H(2), . . . ,
that converges to some hyperplane H. Without loss of generality, but with a gain
in notation, we assume that this subsequence is H(1),H(2), . . . itself.

By a change in coordinate system, we may assume that H = {xd = 0}. Let
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ε > 0 be arbitrary. Suppose n is so large that
∫
|x|≥ε

f(x) ≤ ε/µi(Rd). Then

µ
(n)
i ({x : xd ≥ 0}) =

∫∫
xd+yd≥0

f(x) dλ(x)dµi(y)

≤
[∫∫

yd≥−ε

+

∫∫
xd≥ε

]
f(x) dλ(x)dµi(y)

= µi({y : yd ≥ −ε}) + µi(Rd)

∫
xd≥ε

f(x) dx

≤ µi({y : yd ≥ −ε}) + ε.

Since µ
(n)
i (Rd) = µi(Rd) (exercise!), it thus follows that

µi({y : yd ≥ −ε}) ≥ 1
2µi(Rd)− ε.

Since ε is arbitrary and µi is outer regular, we conclude that µi({y : yd ≥ 0}) ≥
1
2µi(Rd). Since the same is true for {y : yd ≤ 0}, the theorem holds.
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