Topological methods in combinatorics: ham
sandwich theorem*

There is a sandwich, made of ham, cheese and bread. Two hungry people want
to split it. To lose no time, they wish to make a single cut with a knife so that
each of the ingredients is split equally between the two halves. It turns out this is
possible, and the result is known as the ham-sandwich theorem. It asserts that in
arbitrary dimension d it is possible to split d ingredient by a single hyperplane.

A measure p on a set X is finite if ©(X) < oo. A measure is Borel if all open
sets are measurable, and consequently all the sets in the o-algebra generated by the
open sets are measurable (the sets in this o-algebra are called Borel sets). A Borel
measure is outer regular if p(S) =inf scy p(U).

U open
Theorem 1 (Ham-sandwich theorem). Suppose pu1, ..., uq are d finite outer reqular
Borel measure on R%. Then there is a hyperplane H = {x : (x,v) = r} such that the
two closed halfspace that it bounds, Hy = {x : (z,v) > r} and H_ = {z : (z,v) <
r}, satisfy

pi(Hy) > p@®R?Y), and pi(H-) > p(RY)  foralli=1,....d.

The reason why the theorem does not assert that p;(Hy) = p;(H-) = Spu(R?)
is because the measure might be concentrated on a single point, or more generally
on a finite set. Of course, if the measure of every hyperplane is zero, then p;(H;) =
pi(H-) = 5p(R?) because p;(H) = p;i(Hy N H_) = 0.

A commonly used special case of Theorem [ is the case where each measure u;
is a sum of point masses, in which case we obtain the following:

Corollary 2. If Ay,..., Ay are finite sets (or even multisets) in R, then there is
a hyperplane H such that

|A; N Hy| > 3|4, and |A;nH_| > $|A;|  foralli=1,....d.

Our strategy to prove Theorem [ is to prove it for the special case of nice
measures, and use a limiting argument to deduce the general case. Measures p
and A are equicontinuous if u is absolutely continuous with respect to A and A is
absolutely continuous with respect to p, in other words p(S) =0 < A(S) =0
for every set S.

*These notes are from http://www.borisbukh.org/TopCombLent12/notes_hamsandwich.pdf.

Theorem 3. Suppose ji1, ..., pq are d finite Borel measures on R that are equicon-
tinuous with the Lebesgue measure on R%. Then there is a hyperplane H as in the
preceding theorem, so that

pi(Hy) = pi(Hy) = Spa(RY).

Proof of Theorem B. For v € S4 ! and r € R let H(v,r) = {z : (z,v) = r},
Hi(v,r) < {z : (z,v) > r} and H_(v,r) = {z : (z,v) < r} be the hyperplane
parametrised by (v,r) and the two closed halfspaces that it bounds.

As a function of r the function ud(H,(v,r)) is strictly increasing because
H_(r,v) € H_(v,r") if r < r' and the difference H_(v,r’") \ H_(r,v) contains
an open set, and hence has positive measure. Furthermore, ju4(H_(v,7)) is a con-
tinuous function of r. Indeed, on one hand

pa(H-(v,r) \ H_(v,r —¢€)) = pa(H(v,r)) =0

because g is absolutely continuous with respect to the Lebesgue measure and
H (v, r) has zero Lebesgue measure. On the other hand, pq(H— (v, r4+e)\H_(v,r)) —
pa(0) = 0.

The preceding discussion of yq(H_ (v, 7)) extends to pq(Hy (v, 7)), showing that
the latter is a strictly decreasing and continuous function of r. As

711>Ho10 /lzd(H, (’U,’I")) = /'Ld(Rd)7 TEI_DOO Md(Hf(UaT)) =0,

7‘11>Holo Md(H+(v7r)) = /Ld(Rd)7 TEIPOO Nd(H— (UvT)) =0

for each v there is a unique req = req(v) such that pg(H_(v,7eq)) = pa(Hy (v, Teq))-
Since pu(H_ N Hy) = 0, we furthermore have pg(H_(v,7eq)) = pa(Hy(v,7eq)) =
$1a(RY). Define g: S77 — R4~ by

g(v)i = i (H, (v, req)) — M (H+(v, req))’

If g is a continuous function, then by Borsuk—Ulam theorem, g vanishes for some v.
For that value of v, the hyperplane H (v, eq) satisfies the conclusion of the theorem
because g(v)o = 0 implies 11;(H_(v,7eq)) = pi (H4 (v, 7eq))-

So, we need to establish continuity of g. It suffices to establish the continuity of
Teq(v) as a function of v and of h_ (u,v) = p; (H-(v, 7)) and hy (u,v) = p; (Hy (v,7))
as functions of (v,r). Due to the kinship of h_ and h,, we demonstrate only the
continuity of h_, for the continuity of h. is similar.

Continuity of h_(v,r): Suppose (vn,7,) — (v,7), and we wish to show that
h_(vn, ) — (v,r). Let x, be the characteristic function of H_(v,,r,), and x the
characteristic function of H_(v,r). Then x,, converges to x pointwise everywhere
in R? except H(v,r). Since H(v,r) is a null set according to pg, by the dominated
convergence theorem h_(vy, ) = [ Xpn dpta = [ X dpta = h—(v,7).

Continuity of req(v): Let A(v,7) = h_(v,7) — hy(v,r). By the above, A is a
continuous function, and so 7eq(v) = min{r : A(v,r) = 0} is continuous. O
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Proof that Theorem B implies Theorem O. Let pq, ..., puq be as in Theorem M. De-

note the Lebesgue measure on R? by \. Let ui") = p; * fn, where the convolution
of a measure and a function is defined by

p f(U)E // f(x)d\(z)du(y) for every Borel set U, (1)
z+yeU

and {f,}>2, is an approximate identity such that f,, is everywhere positive for each
n. For instance, we may take

fn =Cn eXp(_n|$|2)

where the constant c,, is chosen so that [ f,, d\ = 1 (or explicitly, ¢, = (7/n)%/?).

On one hand, the Lebesgue measure is absolutely continuous with respect to
pgn) because for each set U the definition (M) is an integral of an everywhere
positive function on a set of positive measure. On the other hand, the mea-
sure p; is absolutely continuous with respect to the Lebesgue measure because
if A({U) = 0, then if we integrate over x first, the inner integral vanishes, leading
to wx f(U) = 0. By the Theorem B for each n there is a hyperplane H™) so that
Mgn)(HJ(r")) = ME")(HJ(:I)) = %Mgn)(Rd). Our next step is to extract a convergent
subsequence of these hyperplanes, but the difficulty is that the space of all hyper-
planes in R? is not compact. We remedy this by showing that all H(™, for n large,
meet a specific ball in R<.

Let R be large enough so that the ball B(0, R) centred at the origin of radius R
satisfies y1 (R?\ B) < 1 (R?). Let n be so large that fIxIZR f(z) < %. Then

W@ po2m) = [ i)

< [ / /yl>R+ / /WR] £(2) dA(2)dp (9)

— (R B0, R)) + 1 (RY) / f() de
Th1(RY).

Thus, for all large enough n the hyperplane H(™) meets the ball B(0,2R). Indeed,
if H™ did not meet B(0,2R), one of the two halfspace, H™ or H(f), would be
contained in R\ B(0,2R), and would have measure less than s (R%).

The space of all the hyperplanes meeting B(0,2R) is just { H (v,7) : v € S971, r <
2R}, and so is compact. Thus, there is a convergent subsequence of HY H®
that converges to some hyperplane H. Without loss of generality, but with a gain
in notation, we assume that this subsequence is HW, H®?) . itself.

By a change in coordinate system, we may assume that H = {z4 = 0}. Let

IN

€ > 0 be arbitrary. Suppose n is so large that fsz f(z) <e/p;(RY). Then
WO izaz o) = [[ O f@d\@du)
Ta+ya=0

= U/yd>€+//xd>a] f(@) dA\(@)dpi(y)

il a = —e) +u®) [ f@)do

.'L'dzf;‘
<wi{y:ya = —}) +e
Since ,ugn) (RY) = p;(RY) (exercise!), it thus follows that

pil{y : ya > —e}) > u(R?) —e.

Since ¢ is arbitrary and u; is outer regular, we conclude that p;({y : yq > 0}) >
111;(R%). Since the same is true for {y : y4 < 0}, the theorem holds. O



