Topological methods in combinatorics: ham sandwich theorem^{*}

There is a sandwich, made of ham, cheese and bread. Two hungry people want to split it. To lose no time, they wish to make a single cut with a knife so that each of the ingredients is split equally between the two halves. It turns out this is possible, and the result is known as the ham-sandwich theorem. It asserts that in arbitrary dimension d it is possible to split d ingredient by a single hyperplane.

A measure μ on a set X is *finite* if $\mu(X) < \infty$. A measure is *Borel* if all open sets are measurable, and consequently all the sets in the σ -algebra generated by the open sets are measurable (the sets in this σ -algebra are called Borel sets). A Borel measure is outer regular if $\mu(S) = \inf_{\substack{S \subset U \\ U \text{ open}}} \mu(U)$.

Theorem 1 (Ham-sandwich theorem). Suppose μ_1, \ldots, μ_d are d finite outer regular Borel measure on \mathbb{R}^d . Then there is a hyperplane $H = \{x : \langle x, v \rangle = r\}$ such that the two closed halfspace that it bounds, $H_+ = \{x : \langle x, v \rangle \ge r\}$ and $H_- = \{x : \langle x, v \rangle \le r\}$, satisfy

$$\mu_i(H_+) \ge \frac{1}{2}\mu(\mathbb{R}^d), \text{ and } \mu_i(H_-) \ge \frac{1}{2}\mu(\mathbb{R}^d) \text{ for all } i = 1, \dots, d.$$

The reason why the theorem does not assert that $\mu_i(H_+) = \mu_i(H_-) = \frac{1}{2}\mu(\mathbb{R}^d)$ is because the measure might be concentrated on a single point, or more generally on a finite set. Of course, if the measure of every hyperplane is zero, then $\mu_i(H_+) = \mu_i(H_-) = \frac{1}{2}\mu(\mathbb{R}^d)$ because $\mu_i(H) = \mu_i(H_+ \cap H_-) = 0$.

A commonly used special case of Theorem 1 is the case where each measure μ_i is a sum of point masses, in which case we obtain the following:

Corollary 2. If A_1, \ldots, A_d are finite sets (or even multisets) in \mathbb{R}^d , then there is a hyperplane H such that

$$|A_i \cap H_+| \ge \frac{1}{2} |A_i|$$
, and $|A_i \cap H_-| \ge \frac{1}{2} |A_i|$ for all $i = 1, \dots, d$.

Our strategy to prove Theorem 1 is to prove it for the special case of nice measures, and use a limiting argument to deduce the general case. Measures μ and λ are equicontinuous if μ is absolutely continuous with respect to λ and λ is absolutely continuous with respect to μ , in other words $\mu(S) = 0 \iff \lambda(S) = 0$ for every set S.

Theorem 3. Suppose μ_1, \ldots, μ_d are d finite Borel measures on \mathbb{R}^d that are equicontinuous with the Lebesgue measure on \mathbb{R}^d . Then there is a hyperplane H as in the preceding theorem, so that

$$\mu_i(H_+) = \mu_i(H_+) = \frac{1}{2}\mu_i(\mathbb{R}^d)$$

Proof of Theorem 3. For $v \in S^{d-1}$ and $r \in \mathbb{R}$ let $H(v,r) \stackrel{\text{def}}{=} \{x : \langle x,v \rangle = r\}$, $H_+(v,r) \stackrel{\text{def}}{=} \{x : \langle x,v \rangle \geq r\}$ and $H_-(v,r) \stackrel{\text{def}}{=} \{x : \langle x,v \rangle \leq r\}$ be the hyperplane parametrised by (v,r) and the two closed halfspaces that it bounds.

As a function of r the function $\mu_d(H_-(v,r))$ is strictly increasing because $H_-(r,v) \subset H_-(v,r')$ if r < r' and the difference $H_-(v,r') \setminus H_-(r,v)$ contains an open set, and hence has positive measure. Furthermore, $\mu_d(H_-(v,r))$ is a continuous function of r. Indeed, on one hand

$$\mu_d \big(H_-(v,r) \setminus H_-(v,r-\varepsilon) \big) \to \mu_d \big(H(v,r) \big) = 0$$

because μ_d is absolutely continuous with respect to the Lebesgue measure and H(v, r) has zero Lebesgue measure. On the other hand, $\mu_d(H_-(v, r+\varepsilon) \setminus H_-(v, r)) \rightarrow \mu_d(\emptyset) = 0.$

The preceding discussion of $\mu_d(H_-(v,r))$ extends to $\mu_d(H_+(v,r))$, showing that the latter is a strictly decreasing and continuous function of r. As

$$\lim_{r \to \infty} \mu_d \big(H_-(v,r) \big) = \mu_d(\mathbb{R}^d), \qquad \lim_{r \to -\infty} \mu_d \big(H_-(v,r) \big) = 0,$$
$$\lim_{r \to \infty} \mu_d \big(H_+(v,r) \big) = \mu_d(\mathbb{R}^d), \qquad \lim_{r \to -\infty} \mu_d \big(H_-(v,r) \big) = 0$$

for each v there is a unique $r_{eq} = r_{eq}(v)$ such that $\mu_d(H_-(v, r_{eq})) = \mu_d(H_+(v, r_{eq}))$. Since $\mu(H_- \cap H_+) = 0$, we furthermore have $\mu_d(H_-(v, r_{eq})) = \mu_d(H_+(v, r_{eq})) = \frac{1}{2}\mu_d(\mathbb{R}^d)$. Define $g \colon S^{d-1} \to \mathbb{R}^{d-1}$ by

$$g(v)_i \stackrel{\text{def}}{=} \mu_i \big(H_-(v, r_{\text{eq}}) \big) - \mu_i \big(H_+(v, r_{\text{eq}}) \big).$$

If g is a continuous function, then by Borsuk–Ulam theorem, g vanishes for some v. For that value of v, the hyperplane H(v, eq) satisfies the conclusion of the theorem because $g(v)_0 = 0$ implies $\mu_i(H_-(v, r_{eq})) = \mu_i(H_+(v, r_{eq}))$.

So, we need to establish continuity of g. It suffices to establish the continuity of $r_{eq}(v)$ as a function of v and of $h_{-}(u, v) = \mu_i(H_{-}(v, r))$ and $h_{+}(u, v) = \mu_i(H_{+}(v, r))$ as functions of (v, r). Due to the kinship of h_{-} and h_{+} , we demonstrate only the continuity of h_{-} , for the continuity of h_{+} is similar.

Continuity of $h_{-}(v,r)$: Suppose $(v_n,r_n) \to (v,r)$, and we wish to show that $h_{-}(v_n,r_n) \to (v,r)$. Let χ_n be the characteristic function of $H_{-}(v_n,r_n)$, and χ the characteristic function of $H_{-}(v,r)$. Then χ_n converges to χ pointwise everywhere in \mathbb{R}^d except H(v,r). Since H(v,r) is a null set according to μ_d , by the dominated convergence theorem $h_{-}(v_n,r_n) = \int \chi_n d\mu_d \to \int \chi d\mu_d = h_{-}(v,r)$.

Continuity of $r_{eq}(v)$: Let $\Delta(v, r) = h_{-}(v, r) - h_{+}(v, r)$. By the above, Δ is a continuous function, and so $r_{eq}(v) = \min\{r : \Delta(v, r) = 0\}$ is continuous.

^{*}These notes are from http://www.borisbukh.org/TopCombLent12/notes_hamsandwich.pdf.

Proof that Theorem 3 implies Theorem 1. Let μ_1, \ldots, μ_d be as in Theorem 1. Denote the Lebesgue measure on \mathbb{R}^d by λ . Let $\mu_i^{(n)} = \mu_i * f_n$, where the convolution of a measure and a function is defined by

$$\mu * f(U) \stackrel{\text{def}}{=} \iint_{x+y \in U} f(x) \, d\lambda(x) d\mu(y) \quad \text{for every Borel set } U, \tag{1}$$

and $\{f_n\}_{n=1}^{\infty}$ is an approximate identity such that f_n is everywhere positive for each n. For instance, we may take

$$f_n = c_n \exp(-n|x|^2)$$

where the constant c_n is chosen so that $\int f_n d\lambda = 1$ (or explicitly, $c_n = (\pi/n)^{d/2}$).

On one hand, the Lebesgue measure is absolutely continuous with respect to $\mu_i^{(n)}$ because for each set U the definition (1) is an integral of an everywhere positive function on a set of positive measure. On the other hand, the measure μ_i is absolutely continuous with respect to the Lebesgue measure because if $\lambda(U) = 0$, then if we integrate over x first, the inner integral vanishes, leading to $\mu * f(U) = 0$. By the Theorem 3 for each n there is a hyperplane $H^{(n)}$ so that $\mu_i^{(n)}(H_+^{(n)}) = \mu_i^{(n)}(H_+^{(n)}) = \frac{1}{2}\mu_i^{(n)}(\mathbb{R}^d)$. Our next step is to extract a convergent subsequence of these hyperplanes, but the difficulty is that the space of all hyperplanes in \mathbb{R}^d is not compact. We remedy this by showing that all $H^{(n)}$, for n large, meet a specific ball in \mathbb{R}^d .

Let R be large enough so that the ball B(0, R) centred at the origin of radius R satisfies $\mu_1(\mathbb{R}^d \setminus B) < \frac{1}{8}\mu_1(\mathbb{R}^d)$. Let n be so large that $\int_{|x|>R} f(x) \leq \frac{1}{8}$. Then

$$\mu_1^{(n)} \left(\mathbb{R}^d \setminus B(0, 2R) \right) = \iint_{|x+y| \ge 2R} f(x) \, d\lambda(x) d\mu_1(y)$$

$$\leq \left[\iint_{|y| \ge R} + \iint_{|x| \ge R} \right] f(x) \, d\lambda(x) d\mu_1(y)$$

$$= \mu_1(\mathbb{R}^d \setminus B(0, R)) + \mu_1(\mathbb{R}^d) \int_{|x| \ge R} f(x) \, dx$$

$$\leq \frac{1}{4} \mu_1(\mathbb{R}^d).$$

Thus, for all large enough n the hyperplane $H^{(n)}$ meets the ball B(0, 2R). Indeed, if $H^{(n)}$ did not meet B(0, 2R), one of the two halfspace, $H^{(n)}_{-}$ or $H^{(n)}_{+}$, would be contained in $\mathbb{R}^d \setminus B(0, 2R)$, and would have measure less than $\frac{1}{4}\mu_1(\mathbb{R}^d)$.

The space of all the hyperplanes meeting B(0, 2R) is just $\{H(v, r) : v \in S^{d-1}, r \leq 2R\}$, and so is compact. Thus, there is a convergent subsequence of $H^{(1)}, H^{(2)}, \ldots$, that converges to some hyperplane H. Without loss of generality, but with a gain in notation, we assume that this subsequence is $H^{(1)}, H^{(2)}, \ldots$ itself.

By a change in coordinate system, we may assume that $H = \{x_d = 0\}$. Let

 $\varepsilon > 0$ be arbitrary. Suppose n is so large that $\int_{|x|>\varepsilon} f(x) \leq \varepsilon/\mu_i(\mathbb{R}^d)$. Then

$$\begin{split} \mu_i^{(n)}(\{x: x_d \ge 0\}) &= \iint_{x_d + y_d \ge 0} f(x) \, d\lambda(x) d\mu_i(y) \\ &\leq \left[\iint_{y_d \ge -\varepsilon} + \iint_{x_d \ge \varepsilon}\right] f(x) \, d\lambda(x) d\mu_i(y) \\ &= \mu_i(\{y: y_d \ge -\varepsilon\}) + \mu_i(\mathbb{R}^d) \int_{x_d \ge \varepsilon} f(x) \, dx \\ &\leq \mu_i(\{y: y_d \ge -\varepsilon\}) + \varepsilon. \end{split}$$

Since $\mu_i^{(n)}(\mathbb{R}^d) = \mu_i(\mathbb{R}^d)$ (exercise!), it thus follows that

$$\mu_i(\{y: y_d \ge -\varepsilon\}) \ge \frac{1}{2}\mu_i(\mathbb{R}^d) - \varepsilon$$

Since ε is arbitrary and μ_i is outer regular, we conclude that $\mu_i(\{y : y_d \ge 0\}) \ge \frac{1}{2}\mu_i(\mathbb{R}^d)$. Since the same is true for $\{y : y_d \le 0\}$, the theorem holds. \Box