Set families with a forbidden subposet

Boris Bukh

August 2008
\[[n] = \{1, \ldots, n\} \quad 2^{[n]} = \{F : F \subset [n]\} \]

Definition

Set family is a collection of subsets of \([n]\). In symbols, \(\mathcal{F} \subset 2^{[n]}\).

Theorem (Sperner’28)

Suppose \(\mathcal{F} \subset 2^{[n]}\) is a set family such that for no distinct \(F_1, F_2 \subset \mathcal{F}\) the inclusion \(F_1 \subset F_2\) holds. Then

\[|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}. \]

Equality is attained for \(\mathcal{F} = \binom{[n]}{\lfloor n/2 \rfloor} = \{F \subset [n] : |F| = \lfloor n/2 \rfloor\}.
Reformulation

Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \rightarrow P_2$ such that

\[x \prec_{P_1} y \implies f(x) \prec_{P_2} f(y) \]

Examples:

\[
\begin{align*}
\begin{array}{c}
 a \\
 b
\end{array} & \subset \\
\begin{array}{c}
 a \\
 b
\end{array} & \begin{array}{c}
 a \\
 b
\end{array} \\
\begin{array}{c}
 b \\
 c
\end{array} & \begin{array}{c}
 b \\
 c
\end{array}
\end{align*}
\]

and

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.
Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \rightarrow P_2$ such that

$$x <_{P_1} y \implies f(x) <_{P_2} f(y)$$

Examples:

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.
Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f: P_1 \rightarrow P_2$ such that

$$x <_{P_1} y \implies f(x) <_{P_2} f(y)$$

Examples:

\[a \subset b \]
\[a \subset b \]
\[a \subset b \]

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.
Reformulation

Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \to P_2$ such that

$$x <_{P_1} y \implies f(x) <_{P_2} f(y)$$

Examples:

$$\begin{array}{c}
\text{and}
\end{array}$$

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.

Diagram:
Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \to P_2$ such that

$$x <_{P_1} y \implies f(x) <_{P_2} f(y)$$

Examples:

$$\begin{align*}
\begin{tikzpicture}[scale=0.5]
 \node [shape=circle,draw=black] (a) at (0,2) {a};
 \node [shape=circle,draw=black] (b) at (0,0) {b};
 \end{tikzpicture}
\end{align*} \subset
\begin{align*}
\begin{tikzpicture}[scale=0.5]
 \node [shape=circle,draw=black] (a) at (0,2) {a};
 \node [shape=circle,draw=black] (b) at (1,1) {b};
 \node [shape=circle,draw=black] (c) at (2,0) {c};
 \end{tikzpicture}
\end{align*}
\quad
\text{and}
\quad
\begin{align*}
\begin{tikzpicture}[scale=0.5]
 \node [shape=circle,draw=black] (a) at (0,2) {a};
 \node [shape=circle,draw=black] (b) at (1,1) {b};
 \node [shape=circle,draw=black] (c) at (2,0) {c};
 \end{tikzpicture}
\end{align*} \subset
\begin{align*}
\begin{tikzpicture}[scale=0.5]
 \node [shape=circle,draw=black] (a) at (0,2) {a};
 \node [shape=circle,draw=black] (b) at (1,1) {b};
 \end{tikzpicture}
\end{align*}$$

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set

$F_1 \leq_\mathcal{F} F_2$ if $F_1 \subset F_2$.
Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \rightarrow P_2$ such that

$$x \leq_{P_1} y \iff f(x) \leq_{P_2} f(y)$$

Examples: \subset and \subset

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.
Reformulation

Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \rightarrow P_2$ such that

$\forall x, y \in P_1$ such that $x \leq P_1 y$ implies $f(x) \leq P_2 f(y)$.

Examples:

![Diagram showing subposets](image)

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_\mathcal{F} F_2$ if $F_1 \subset F_2$.
Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \to P_2$ such that

$\forall x, y \in P_1 : x <_{P_1} y \implies f(x) <_{P_2} f(y)$

Examples:

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.
Reformulation

Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f : P_1 \rightarrow P_2$ such that

$x <_{P_1} y \implies f(x) <_{P_2} f(y)$

Examples:

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.

Way of thinking
Reformulation

Examples: \(\begin{array}{c}
\bullet a \\
\bullet b \\
\end{array} \quad \subset \quad \begin{array}{c}
\bullet a \\
\bullet b \\
\bullet c \\
\end{array} \quad \text{and} \quad \begin{array}{c}
\bullet a \\
\bullet b \\
\bullet c \\
\end{array} \quad \subset \quad \begin{array}{c}
\bullet a \\
\bullet b \\
\bullet c \\
\end{array} \end{array} \)

Way of thinking

A set family is a poset under inclusion. For \(F_1, F_2 \in \mathcal{F} \) set \(F_1 \leq_{\mathcal{F}} F_2 \) if \(F_1 \subset F_2 \).
Reformulation

Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f: P_1 \rightarrow P_2$ such that $x \prec P_1 y \Rightarrow f(x) \prec P_2 f(y)$.

Examples:

\subset and \subset

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq \mathcal{F} F_2$ if $F_1 \subset F_2$.

Reformulation

Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f: P_1 \to P_2$ such that $x <_{P_1} y \Rightarrow f(x) <_{P_2} f(y)$.

Examples:

$$
\begin{align*}
\text{ and } \\
\begin{array}{c}
\bullet \quad \subset \quad \bullet \\
b & a \\
\end{array} & \quad \text{ and } & \quad \begin{array}{c}
\bullet \quad \subset \quad \bullet \\
b & a \\
\end{array} & \quad \begin{array}{c}
\bullet \quad \subset \quad \bullet \\
b & c \\
\end{array}
\end{align*}
$$

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.
Reformulation

Definition

P_1 is a subposet of P_2 (written $P_1 \subset P_2$) if there is an injective $f: P_1 \rightarrow P_2$ such that $x < P_1 y \Rightarrow f(x) < P_2 f(y)$.

Examples:

\[
\begin{array}{ccc}
\text{Examples:} & \subset & \text{and} \\
\begin{array}{ccc}
 a \\
 b
\end{array} & \subset & \begin{array}{ccc}
 a \\
 b \\
 b
\end{array} \\
 a & \subset & \begin{array}{ccc}
 a \\
 b \\
 c \\
 b \\
 c
\end{array}
\end{array}
\]

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.
Reformulation

Examples: \subset and \subset

Way of thinking

A set family is a poset under inclusion. For $F_1, F_2 \in \mathcal{F}$ set $F_1 \leq_{\mathcal{F}} F_2$ if $F_1 \subset F_2$.

Theorem (Sperner’28)

$\emptyset \not\in \mathcal{F} \implies |\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$
Reformulation and the known results

Notation

Largest family in $[n]$ not containing poset P has size

$$\text{ex}(P, n) = \max_{P \not\subset F} |F|$$

$F \subseteq 2^{[n]}$

<table>
<thead>
<tr>
<th>Year</th>
<th>Notation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperner’28</td>
<td>$\text{ex}(\emptyset, n)$</td>
<td>$(\binom{n}{\lfloor n/2 \rfloor})$</td>
</tr>
<tr>
<td>Erdős’45</td>
<td>$\text{ex}(\emptyset, n)$</td>
<td>$(\binom{n}{\lfloor n/2 \rfloor}) + (\binom{n}{\lfloor n/2 \rfloor} + 1)$</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>$\text{ex}(\cup, n)$</td>
<td>$(\binom{n}{n/2})(1 + O(1/n))$</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>$\text{ex}(\Delta, n)$</td>
<td>$2(\binom{n}{n/2})(1 + O(1/n))$</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>$\text{ex}(\nabla, n)$</td>
<td>$(\binom{n}{\lfloor n/2 \rfloor}) + (\binom{n}{\lfloor n/2 \rfloor} + 1)$</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>$\text{ex}(\nabla, n)$</td>
<td>$(\binom{n}{n/2})(1 + O(1/n))$</td>
</tr>
</tbody>
</table>
Reformulation and the known results

<table>
<thead>
<tr>
<th>Notation</th>
<th>Formula</th>
</tr>
</thead>
</table>
| Largest family in \([n]\) not containing poset \(P\) has size | \[
\text{ex}(P, n) = \max_{P \not\subseteq \mathcal{F}} |\mathcal{F}| \\
\mathcal{F} \subseteq 2^{[n]} \]
| Sperner’28 | \[
\text{ex}(\mathbb{I}, n) = \binom{n}{\lfloor n/2 \rfloor} \]
| Erdős’45 | \[
\text{ex}(\mathbb{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]
| Katona–Tarján’83 | \[
\text{ex}(\mathcal{V}, n) = \binom{n}{n/2} (1 + O(1/n)) \]
| Thanh’98 | \[
\text{ex}(\mathcal{A}, n) = 2 \binom{n}{n/2} (1 + O(1/n)) \]
| De Bonis–Katona–Swanepoel’05 | \[
\text{ex}(\mathcal{K}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]
| Griggs–Katona’08 | \[
\text{ex}(\mathcal{K}, n) = \binom{n}{n/2} (1 + O(1/n)) \]
Reformulation and the known results

<table>
<thead>
<tr>
<th>Notation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest family in $[n]$ not containing poset P has size</td>
<td></td>
</tr>
<tr>
<td>$ex(P, n) = \max_{\mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}}</td>
<td>\mathcal{F}</td>
</tr>
<tr>
<td>Sperner’28</td>
<td>$ex(\emptyset, n) = \binom{n}{\lfloor n/2 \rfloor}$</td>
</tr>
<tr>
<td>Erdős’45</td>
<td>$ex({}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>$ex(\lor, n) = \binom{n}{\lfloor n/2 \rfloor} (1 + O(1/n))$</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>$ex(\land, n) = 2 \binom{n}{\lfloor n/2 \rfloor} (1 + O(1/n))$</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>$ex(\bigvee, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>$ex(\bigwedge, n) = \binom{n}{\lfloor n/2 \rfloor} (1 + O(1/n))$</td>
</tr>
</tbody>
</table>
Reformulation and the known results

Notation

Largest family in \([n]\) not containing poset \(P\) has size

\[\text{ex}(P, n) = \max_{P \not\subseteq \mathcal{F}} |\mathcal{F}|\]

<table>
<thead>
<tr>
<th>Sperner’28</th>
<th>(\text{ex}([n/2], n) = \binom{n}{\lfloor n/2 \rfloor})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdős’45</td>
<td>(\text{ex}([n/2], n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>(\text{ex}(\forall, n) = \binom{n}{\lfloor n/2 \rfloor} (1 + O(1/n)))</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>(\text{ex}(\exists, n) = 2^{\binom{n}{\lfloor n/2 \rfloor}} (1 + O(1/n)))</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>(\text{ex}(\exists\forall, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>(\text{ex}(\exists\forall, n) = \binom{n}{\lfloor n/2 \rfloor} (1 + O(1/n)))</td>
</tr>
</tbody>
</table>
Reformulation and the known results

Notation

Largest family in \([n] \) not containing poset \(P\) has size

\[
\text{ex}(P, n) = \max_{P \notin \mathcal{F}} |\mathcal{F}|
\]

- **Sperner’28**
 \[
 \text{ex}(\emptyset, n) = \binom{n}{\lfloor n/2 \rfloor}
 \]

- **Erdős’45**
 \[
 \text{ex}(\uparrow, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}
 \]

- **Katona–Tarján’83**
 \[
 \text{ex}(\vee, n) = \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right)
 \]

- **Thanh’98**
 \[
 \text{ex}(\downarrow, n) = 2\binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right)
 \]

- **De Bonis–Katona–Swanepoel’05**
 \[
 \text{ex}(\cup, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}
 \]

- **Griggs–Katona’08**
 \[
 \text{ex}(\cap, n) = \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right)
 \]
Reformulation and the known results

<table>
<thead>
<tr>
<th>Notation</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest family in ([n]) not containing poset (P) has size</td>
<td>(\text{ex}(P, n) = \max_{\mathcal{F} \subseteq 2^n}</td>
</tr>
<tr>
<td>Sperner’28</td>
<td>(\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor})</td>
</tr>
<tr>
<td>Erdős’45</td>
<td>(\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>(\text{ex}(\mathcal{V}, n) = \binom{n}{\lfloor n/2 \rfloor}(1 + O(1/n)))</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>(\text{ex}(\mathcal{L}, n) = 2\binom{n}{\lfloor n/2 \rfloor}(1 + O(1/n)))</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>(\text{ex}(\mathcal{N}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>(\text{ex}(\mathcal{N}, n) = \binom{n}{\lfloor n/2 \rfloor}(1 + O(1/n)))</td>
</tr>
</tbody>
</table>

\(\mathcal{I}\): Intervals, \(\mathcal{V}\): Venn diagrams, \(\mathcal{L}\): L-shapes, \(\mathcal{N}\): Non-overlapping.
Reformulation and the known results

<table>
<thead>
<tr>
<th>Notation</th>
<th>Largest family in $[n]$ not containing poset P has size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperner'28</td>
<td>$\max_{P \not\subset \mathcal{F}}</td>
</tr>
<tr>
<td>Erdős'45</td>
<td>$\max_{P \not\subset \mathcal{F}}</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>$\binom{n}{n/2} (1 + O(1/n))$</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>$2 \binom{n}{n/2} (1 + O(1/n))$</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>$\binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor+1}$</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>$\binom{n}{n/2} (1 + O(1/n))$</td>
</tr>
</tbody>
</table>
An explanation for the known results

<table>
<thead>
<tr>
<th>Notation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest family in $[n]$ not containing poset P has size</td>
<td>$\text{ex}(P, n) = \max_{F \subseteq 2^{[n]}}</td>
</tr>
<tr>
<td>Sperner’28</td>
<td>$\text{ex}(\emptyset, n) = \binom{n}{\lfloor n/2 \rfloor}$</td>
</tr>
<tr>
<td>Erdős’45</td>
<td>$\text{ex}(\emptyset, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>$\text{ex}(\updownarrow, n) = \binom{n}{n/2} (1 + O(1/n))$</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>$\text{ex}(\downarrow, n) = 2 \binom{n}{n/2} (1 + O(1/n))$</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>$\text{ex}(\uparrow, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>$\text{ex}(\updownarrow, n) = \binom{n}{n/2} (1 + O(1/n))$</td>
</tr>
</tbody>
</table>
Notation

Largest family in $[n]$ not containing poset P has size $\text{ex}(P, n) = \max_{F \subseteq 2^{[n]} \setminus P} |F|$

<table>
<thead>
<tr>
<th>Notation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperner’28</td>
<td>$\text{ex}(\mathbb{I}, n) = \binom{n}{\lfloor n/2 \rfloor}$</td>
</tr>
<tr>
<td>Erdős’45</td>
<td>$\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>$\text{ex}(\mathcal{V}, n) = \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right)$</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>$\text{ex}(\mathcal{L}, n) = 2 \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right)$</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>$\text{ex}(\mathcal{N}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>$\text{ex}(\mathcal{N}, n) = \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right)$</td>
</tr>
</tbody>
</table>
An explanation for the known results

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Exponential Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1928</td>
<td>Sperner</td>
<td>(\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor})</td>
</tr>
<tr>
<td>1945</td>
<td>Erdős</td>
<td>(\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>1983</td>
<td>Katona–Tarján</td>
<td>(\text{ex}(\mathcal{V}, n) = \binom{n}{n/2}(1 + O(1/n)))</td>
</tr>
<tr>
<td>1998</td>
<td>Thanh</td>
<td>(\text{ex}(\mathcal{M}, n) = 2\binom{n}{n/2}(1 + O(1/n)))</td>
</tr>
<tr>
<td>2005</td>
<td>De Bonis–Katona–Swanepoel</td>
<td>(\text{ex}(\mathcal{M}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>2008</td>
<td>Griggs–Katona</td>
<td>(\text{ex}(\mathcal{N}, n) = \binom{n}{n/2}(1 + O(1/n)))</td>
</tr>
</tbody>
</table>
An explanation for the known results

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperner’28</td>
<td>(\text{ex}(\mathbb{I}, n) = \binom{n}{\lfloor n/2 \rfloor})</td>
</tr>
<tr>
<td>Erdős’45</td>
<td>(\text{ex}(\mathbb{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>Katona–Tarján’83</td>
<td>(\text{ex}(\mathbb{V}, n) = \binom{n}{n/2} \left(1 + O(1/n) \right))</td>
</tr>
<tr>
<td>Thanh’98</td>
<td>(\text{ex}(\mathbb{D}, n) = 2 \binom{n}{n/2} \left(1 + O(1/n) \right))</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel’05</td>
<td>(\text{ex}(\mathbb{D}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1})</td>
</tr>
<tr>
<td>Griggs–Katona’08</td>
<td>(\text{ex}(\mathbb{N}, n) = \binom{n}{n/2} \left(1 + O(1/n) \right))</td>
</tr>
</tbody>
</table>
An explanation for the known results

<table>
<thead>
<tr>
<th>Author</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperner ’28</td>
<td>$\text{ex}(\mathbb{I}, n) = \left(\begin{array}{c}n \vspace{1pt} \ \lfloor n/2 \rfloor \end{array}\right)$</td>
</tr>
<tr>
<td>Erdős ’45</td>
<td>$\text{ex}(\mathbb{I}, n) = \left(\begin{array}{c}n \vspace{1pt} \ \lfloor n/2 \rfloor \end{array}\right) + \left(\begin{array}{c}n \vspace{1pt} \ \lfloor n/2 \rfloor + 1 \end{array}\right)$</td>
</tr>
<tr>
<td>Katona–Tarján ’83</td>
<td>$\text{ex}(\mathbb{Y}, n) = \left(\begin{array}{c}n \vspace{1pt} \ n/2 \end{array}\right) \left(1 + O\left(1/n\right)\right)$</td>
</tr>
<tr>
<td>Thanh ’98</td>
<td>$\text{ex}(\mathbb{M}, n) = 2\left(\begin{array}{c}n \vspace{1pt} \ n/2 \end{array}\right) \left(1 + O\left(1/n\right)\right)$</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel ’05</td>
<td>$\text{ex}(\mathbb{M}, n) = \left(\begin{array}{c}n \vspace{1pt} \ \lfloor n/2 \rfloor \end{array}\right) + \left(\begin{array}{c}n \vspace{1pt} \ \lfloor n/2 \rfloor + 1 \end{array}\right)$</td>
</tr>
<tr>
<td>Griggs–Katona ’08</td>
<td>$\text{ex}(\mathbb{N}, n) = \left(\begin{array}{c}n \vspace{1pt} \ n/2 \end{array}\right) \left(1 + O\left(1/n\right)\right)$</td>
</tr>
</tbody>
</table>
An explanation for the known results

Sperner’28
\[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} \]

Erdős’45
\[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]

Katona–Tarján’83
\[\text{ex}(\mathcal{V}, n) = \binom{n}{n/2}(1 + O(1/n)) \]

Thanh’98
\[\text{ex}(\mathcal{\mathcal{L}}, n) = 2\binom{n}{n/2}(1 + O(1/n)) \]

De Bonis–Katona–Swanepoel’05
\[\text{ex}(\mathcal{\mathcal{L}}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]

Griggs–Katona’08
\[\text{ex}(\mathcal{\mathcal{N}}, n) = \binom{n}{n/2}(1 + O(1/n)) \]
An explanation for the known results

Sperner'28 \[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} \]
Erdős'45 \[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]
Katona–Tarján’83 \[\text{ex}(\mathcal{V}, n) = \binom{n}{n/2}(1 + O(1/n)) \]
Thanh’98 \[\text{ex}(\mathcal{H}, n) = 2\binom{n}{n/2}(1 + O(1/n)) \]
De Bonis–Katona–Swanepoel’05 \[\text{ex}(\mathcal{N}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]
Griggs–Katona’08 \[\text{ex}(\mathcal{N}, n) = \binom{n}{n/2}(1 + O(1/n)) \]

Conjecture

For a fixed poset \(P \)

\[\text{ex}(P, n) = \ell(P)\binom{n}{n/2}(1 + O(1/n)) \]

where \(\ell(P) \) is the largest number of “middle” levels whose union contains no \(P \).
An explanation for the known results

Sperner’28
\[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} \]
Erdős’45
\[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]
Katona–Tarján’83
\[\text{ex}(\mathcal{V}, n) = \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right) \]
Thanh’98
\[\text{ex}(\mathcal{M}, n) = 2\binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right) \]
De Bonis–Katona–Swanepoel’05
\[\text{ex}(\mathcal{N}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]
Griggs–Katona’08
\[\text{ex}(\mathcal{N}, n) = \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right) \]

Conjecture

For a fixed poset \(P \)
\[\text{ex}(P, n) = l(P) \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right) \]
where \(l(P) \) is the largest number of “middle” levels whose union contains no \(P \).
An explanation for the known results

Sperner’28

\[\operatorname{ex}(\emptyset, n) = \binom{n}{\lfloor n/2 \rfloor} \]

Erdős’45

\[\operatorname{ex}(\uparrow, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]

Katona–Tarján’83

\[\operatorname{ex}(\updownarrow, n) = \binom{n}{\lfloor n/2 \rfloor}(1 + O(1/n)) \]

Thanh’98

\[\operatorname{ex}(\nabla, n) = 2\binom{n}{n/2}(1 + O(1/n)) \]

De Bonis–Katona–Swanepoel’05

\[\operatorname{ex}(\bigstar, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]

Griggs–Katona’08

\[\operatorname{ex}(\kappa, n) = \binom{n}{\lfloor n/2 \rfloor}(1 + O(1/n)) \]

Conjecture

For a fixed poset \(P \)

\[\operatorname{ex}(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n)) \]

where \(l(P) \) is the largest number of “middle” levels whose union contains no \(P \).
An explanation for the known results

Sperner’28
ex(\{, n) = \binom{n}{\lfloor n/2 \rfloor}

Erdős’45
ex(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor+1}

Katona–Tarján’83
ex(\mathcal{V}, n) = \binom{n}{n/2} \left(1 + O(1/n)\right)

Thanh’98
ex(\mathcal{H}, n) = 2\binom{n}{n/2} \left(1 + O(1/n)\right)

De Bonis–Katona–Swanepoel’05
ex(\mathcal{X}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor+1}

Conjecture

For a fixed poset P

ex(P, n) = l(P) \binom{n}{n/2} \left(1 + O(1/n)\right)

where l(P) is the largest number of “middle” levels whose union contains no P.
An explanation for the known results

Sperner’28 \[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} \]
Erdős’45 \[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]
Katona–Tarján’83 \[\text{ex}(\mathcal{V}, n) = \binom{n}{n/2} (1 + O(1/n)) \]
Thanh’98 \[\text{ex}(\mathcal{\cup}, n) = 2 \binom{n}{n/2} (1 + O(1/n)) \]
De Bonis–Katona–Swanepoel’05 \[\text{ex}(\mathcal{\cup}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]

Conjecture

For a fixed poset \(P \)

\[\text{ex}(P, n) = l(P) \left(\binom{n}{n/2} \right) (1 + O(1/n)) \]

where \(l(P) \) is the largest number of “middle” levels whose union contains no \(P \).
An explanation for the known results

Sperner’28
ex(\mathcal{I}, n) = \binom{n}{\left\lfloor n/2 \right\rfloor}

Erdős’45
ex(\mathcal{I}, n) = \binom{n}{\left\lfloor n/2 \right\rfloor} + \binom{n}{\left\lfloor n/2 \right\rfloor + 1}

Katona–Tarján’83
ex(\mathcal{V}, n) = \binom{n}{n/2}(1 + O(1/n))

ex(\mathbb{L}, n) = 2\binom{n}{n/2}(1 + O(1/n))

Conjecture

For a fixed poset P

\text{ex}(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n))

where \text{l}(P) is the largest number of “middle” levels whose union contains no P.
An explanation for the known results

Sperner’28

\[\text{ex}(1, n) = \binom{n}{\lfloor n/2 \rfloor} \]

Erdős’45

\[\text{ex}(1, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]

Katona–Tarján’83

\[\text{ex}(\mathcal{V}, n) = \binom{n}{n/2} (1 + O(1/n)) \]

\[\text{ex}(\mathcal{I}, n) = 2 \binom{n}{n/2} (1 + O(1/n)) \]

Thanh’98

\[\text{ex}(\mathcal{I}, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1} \]

Conjecture

For a fixed poset \(P \)

\[\text{ex}(P, n) = l(P) \left(\binom{n}{n/2} (1 + O(1/n)) \right) \]

where \(l(P) \) is the largest number of “middle” levels whose union contains no \(P \).
An explanation for the known results

Sperner’28
ex(\mathcal{I}, n) = \binom{n}{\left\lfloor n/2 \right\rfloor}

Erdős’45
ex(\mathcal{I}, n) = \binom{n}{\left\lfloor n/2 \right\rfloor} + \binom{n}{\left\lfloor n/2 \right\rfloor + 1}

Katona–Tarján’83
ex(\mathcal{Y}, n) = \binom{n}{n/2}(1 + O(1/n))

De Bonis–Katona–Swanepoel’05
ex(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n))

Grimmett–Griggs–Katona’08
ex(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n))

Conjecture

For a fixed poset \(P \)

ex(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n))

where \(l(P) \) is the largest number of “middle” levels whose union contains no \(P \).
An explanation for the known results

Sperner’28
ex(\emptyset, n) = \binom{n}{\lfloor n/2 \rfloor}

Erdős’45
ex(\bullet, n) = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}

Katona–Tarián’83
ex(\vee, n) = \binom{n}{n/2}(1 + O(1/n))

De Bonis–Katona–Swanepoel’05
ex(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n))

Griggs–Katona’08
ex(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n))

Conjecture
For a fixed poset P

ex(P, n) = l(P)\binom{n}{n/2}(1 + O(1/n))

where l(P) is the largest number of “middle” levels whose union contains no P.
Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} (1 + O(1/n))$$

where $l(P)$ is the largest number of “middle” levels whose union contains no P.

An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} (1 + O(1/n))$$

where $l(P)$ is the largest number of “middle” levels whose union contains no P.
An explanation for the known results

<table>
<thead>
<tr>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperner'28 $\text{ex}(n)$</td>
<td>$\left\lfloor \frac{n}{2} \right\rfloor$</td>
</tr>
<tr>
<td>Erdős'45 $\text{ex}(n)$</td>
<td>$\left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor + 1$</td>
</tr>
<tr>
<td>Katona–Tarján'83 $\text{ex}(n)$</td>
<td>$n \left(1 + O\left(\frac{1}{n} \right) \right)$</td>
</tr>
<tr>
<td>Thanh'98 $\text{ex}(n)$</td>
<td>$2n \left(1 + O\left(\frac{1}{n} \right) \right)$</td>
</tr>
<tr>
<td>De Bonis–Katona–Swanepoel'05 $\text{ex}(n)$</td>
<td>$\left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor + 1$</td>
</tr>
<tr>
<td>Griggs–Katona'08 $\text{ex}(n)$</td>
<td>$n \left(1 + O\left(\frac{1}{n} \right) \right)$</td>
</tr>
</tbody>
</table>

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} \left(1 + O\left(\frac{1}{n} \right) \right)$$

where $l(P)$ is the largest number of “middle” levels whose union contains no P.
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} (1 + O(1/n))$$

where $l(P)$ is the largest number of “middle” levels whose union contains no P.

- Sperner'28 $\text{ex}(\), n = \binom{n}{\lfloor n/2 \rfloor}$
- Erdős'45 $\text{ex}(\), n = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$
- Katona–Tarján'83 $\text{ex}(\), n = n \binom{n}{n/2} (1 + O(1/n))$
- Thanh'98 $\text{ex}(\), n = 2 \binom{n}{n/2} (1 + O(1/n))$
- De Bonis–Katona–Swanepoel'05 $\text{ex}(\), n = \binom{n}{\lfloor n/2 \rfloor} + \binom{n}{\lfloor n/2 \rfloor + 1}$
- Griggs–Katona'08 $\text{ex}(\), n = n \binom{n}{n/2} (1 + O(1/n))$
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} (1 + O(1/n))$$

where $l(P)$ is the largest number of “middle” levels whose union contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} (1 + O(1/n)).$$
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} \left(1 + O(1/n)\right)$$

where $l(P)$ is the largest number of “middle” levels whose union contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} \left(1 + O(1/n)\right).$$
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \left(\binom{n}{n/2} \right) \left(1 + O(1/n) \right)$$

where $l(P)$ is the largest number of “middle” levels whose union contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \left(\binom{n}{n/2} \right) \left(1 + O(1/n) \right).$$
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} (1 + O(1/n))$$

where $l(P)$ is the largest number of “middle” levels whose union

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} (1 + O(1/n)).$$
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} (1 + O(1/n))$$

where $l(P)$ is the largest number of “middle” levels whose union...

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} (1 + O(1/n)).$$
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \left(\binom{n}{n/2} \right) \left(1 + O(1/n) \right)$$

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \left(\binom{n}{n/2} \right) \left(1 + O(1/n) \right).$$
An explanation for the known results

Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \left(\binom{n}{n/2} \right) \left(1 + O(1/n) \right)$$

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \left(\binom{n}{n/2} \right) \left(1 + O(1/n) \right).$$
Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \binom{n}{n/2} (1 + O(1/n))$$

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} (1 + O(1/n)).$$
Conjecture

For a fixed poset P

$$\text{ex}(P, n) = l(P) \left(\frac{n}{n/2} \right) \left(1 + O(1/n) \right)$$

where $l(P)$ is the largest number of "middle" levels whose union contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \left(\frac{n}{n/2} \right) \left(1 + O(1/n) \right).$$
An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} \left(1 + O\left(\frac{1}{n}\right)\right).$$
An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} (1 + O(1/n)).$$
An explanation for the known results

Conjecture

For a fixed poset P, $\text{ex}(P, n) = l(P)(n^2/2)(1 + O(1/n))$ where $l(P)$ is the largest number of "middle" levels whose union contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2}(1 + O(1/n))$$.
An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1)\left(\frac{n}{n/2}\right)(1 + O(1/n)).$$
An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$\text{ex}(P, n) = (h(P) - 1) \binom{n}{n/2} (1 + O(1/n)).$$

Qualitatively explains all the previously known result including $\bullet \subset$ poset because $\bullet \subset \bowtie$.

For $h(P) = 2$ independently proved by Griggs and Lu. They also proved the conjecture for a large class of posets with $h(P) = 2$, whose Hasse diagram is not a tree.
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon)\binom{n}{n/2}$, poset $P = \mathbb{N}$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon) \binom{n}{n/2}$, poset $P = \mathbb{N}$

Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'.
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon) \binom{n}{n/2}$, poset $P = \mathbb{N}$

Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon)\left(\frac{n}{2}\right)$, poset $P = \mathbb{N}$

Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

* Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon) \binom{n}{n/2}$, poset $P = \mathbb{N}$

Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'

To embed:

```
\begin{tikzpicture}
  \node (a) at (0,0) {a};
  \node (b) at (1,1) {b};
  \node (c) at (1,-1) {c};
  \node (d) at (2,0) {d};
  \draw (a) -- (b);
  \draw (a) -- (c);
\end{tikzpicture}
```

Having embedded:

```
\begin{tikzpicture}
  \node (a) at (0,0) {a};
  \node (b) at (1,1) {b};
  \node (c) at (1,-1) {c};
  \node (d) at (2,0) {d};
  \draw (a) -- (b);
  \draw (a) -- (c);
\end{tikzpicture}
```
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon)(\binom{n}{n/2})$, poset $P = \mathbb{N}$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

* Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'

To embed:

```
  b  d
  a  c
```

Having embedded:

```
  b
  a
```
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon)\binom{n}{n/2}$, poset $P = \mathbb{N}$

Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'

To embed:

Having embedded:
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon) \binom{n}{n/2}$, poset $P = \mathbb{N}$

Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'

To embed: $\begin{array}{ccc} a & b & d \\ \bullet & \bullet & \bullet \end{array}$

Having embedded: $\begin{array}{ccc} a & c \end{array}$

Done!
First idea for \(h(P) = 2 \)

Have: \(|\mathcal{F}| \geq (1 + \varepsilon)(^{n}_{n/2})\), poset \(P = \mathbb{N} \)

Want: an embedding of \(P \) into poset \((\mathcal{F}, \subset)\)

Idea

Treat poset \((\mathcal{F}, \subset)\) as a graph, and embed tree into it.

- Graph \(G \). Vertex set \(V(G) = \mathcal{F} \), for \(F_1, F_2 \in \mathcal{F} \) edge \(F_1 \sim F_2 \) if either \(F_1 \subset F_2 \) or \(F_2 \subset F_1 \).
- If \(\varepsilon > 0 \) the average degree of \(G \) is at least 100.
- Subgraph \(G' \) in which minimum degree is at least 50. Will embed into \(G' \)

To embed:

```
  b  d
  a  c
```

Having embedded:

```
  b
  a
```
First idea for $h(P) = 2$

Have: $|\mathcal{F}| \geq (1 + \varepsilon) \binom{n}{n/2}$, poset $P = \mathbb{N}$

Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G) = \mathcal{F}$, for $F_1, F_2 \in \mathcal{F}$ edge $F_1 \sim F_2$ if either $F_1 \subset F_2$ or $F_2 \subset F_1$.
- If $\varepsilon > 0$ the average degree of G is at least 100.
- Subgraph G' in which minimum degree is at least 50. Will embed into G'

To embed: b d

Having embedded: b c
First idea for \(h(P) = 2 \)

Have: \(|\mathcal{F}| \geq (1 + \varepsilon) \binom{n}{n/2} \), poset \(P = \mathbb{N} \)

Want: an embedding of \(P \) into poset \((\mathcal{F}, \subset)\)

Idea

Treat poset \((\mathcal{F}, \subset)\) as a graph, and embed tree into it.

- Graph \(G \). Vertex set \(V(G) = \mathcal{F} \), for \(F_1, F_2 \in \mathcal{F} \) edge \(F_1 \sim F_2 \) if either \(F_1 \subset F_2 \) or \(F_2 \subset F_1 \).
- If \(\varepsilon > 0 \) the average degree of \(G \) is at least 100.
- Subgraph \(G' \) in which minimum degree is at least 50. Will embed into \(G' \)

To embed:

Having embedded:

Done next step
Trouble with $h(P) \geq 3$

Difficulty
For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem
How to embed a tree into a graph of large average degree without using minimum degree?
Trouble with \(h(P) \geq 3 \)

Difficulty

For \(h(P) \geq 3 \) instead of graphs have to use \(h(P) \)-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?

Theorem

For every tree \(T \) there is a \(d = d(T) \) such that every graph \(G \) of average degree \(\geq d \) contains \(T \).
Trouble with \(h(P) \geq 3 \)

Difficulty

For \(h(P) \geq 3 \) instead of graphs have to use \(h(P) \)-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?

Theorem

For every tree \(T \) there is a \(d = d(T) \) such that every graph \(G \) of average degree \(\geq d \) contains \(T \).
Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?

Theorem

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.
Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without

Theorem

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.
Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?

Theorem

*For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.***
Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

Theorem

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.
Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Theorem

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.
Difficulty
For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Theorem
For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.
Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Theorem

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T. Using minimum degree?
Trouble with $h(P) \geq 3$

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.
Trouble with $h(P) \geq 3$

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.</td>
</tr>
</tbody>
</table>
Trouble with $h(P) \geq 3$

Theorem

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.
Trouble with $h(P) \geq 3$

Theorem

*For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.***
Theorem

For every tree T there is a $d = d(T)$ such that every graph G of average degree $\geq d$ contains T.

Proof.

Induction on $|T|$. If $|T| = 1$, trivial. Let v be a leaf. Else let $T' = T \setminus \{v\}$, and $d(T) = 2d(T') + 4|T|

- Let $V' = \{x \in V(G) : \deg(x) \geq d(T)/4\}$. Define $G' = G|_{V'}$

- Average degree of G' is at least $d(T)/2$.

- Find an embedding of T' into G'.

- Since $\deg(u) \geq |T|$ in G, extend the embedding.