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Introduction

[n] = {1, . . . , n} 2[n] = {F : F ⊂ [n]}

Definition

Set family is a collection of subsets of [n]. In symbols, F ⊂ 2[n].

Theorem (Sperner’28)

Suppose F ⊂ 2[n] is a set family such that for no distinct
F1,F2 ⊂ F the inclusion F1 ⊂ F2 holds. Then

|F| ≤
(

n

bn/2c

)
.

Equality is attained for F =
( [n]
bn/2c

)
= {F ⊂ [n] : |F | = bn/2c}.



Reformulation

Definition

P1 is a subposet of P2 (written P1 ⊂ P2) if there is an injective
f : P1 → P2 such that

x <P1 y =⇒ f (x) <P2 f (y)

Examples: ⊂
b b

a a

and
b c

a

⊂
a

b

c

Way of thinking

A set family is a poset under inclusion. For F1,F2 ∈ F set
F1 ≤F F2 if F1 ⊂ F2.
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6⊂ F =⇒ |F| ≤
( n
bn/2c

)



Reformulation and the known results

Notation

Largest family in [n] not containing poset P has size

ex(P, n) = max
P 6⊂F
F⊂2[n]

|F|

Sperner’28 ex( , n) =
( n
bn/2c

)
Erdős’45 ex( , n) =

( n
bn/2c

)
+

( n
bn/2c+1

)
Katona–Tarján’83 ex( , n) =

( n
n/2

)(
1 + O(1/n)

)
Thanh’98 ex( , n) = 2

( n
n/2

)(
1 + O(1/n)

)
De Bonis–Katona–Swanepoel’05 ex( , n) =

( n
bn/2c

)
+

( n
bn/2c+1

)
Griggs–Katona’08 ex( , n) =

( n
n/2

)(
1 + O(1/n)

)
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For a fixed poset P

ex(P, n) = l(P)

(
n

n/2

)(
1 + O(1/n)

)
where l(P) is the largest number of “middle” levels whose union
contains no P.
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Qualitatively explains all the previously known result including
poset because ⊂ .
For h(P) = 2 independently proved by Griggs and Lu. They also
proved the conjecture for a large class of posets with h(P) = 2,
whose Hasse diagram is not a tree.



First idea for h(P) = 2

Have: |F| ≥ (1 + ε)
( n
n/2

)
, poset P =

Want: an embedding of P into poset (F ,⊂)

Idea

Treat poset (F ,⊂) as a graph, and embed tree into it.

Graph G . Vertex set V (G ) = F , for F1,F2 ∈ F edge F1 ∼ F2

if either F1 ⊂ F2 or F2 ⊂ F1.

If ε > 0 the average degree of G is at least 100.

Subgraph G ′ in which minimum degree is at least 50. Will
embed into G ′

To embed:

b d

a c
Having embedded:

a

b

b c

c
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Trouble with h(P) ≥ 3

Difficulty

For h(P) ≥ 3 instead of graphs have to use h(P)-uniform
hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without
using minimum degree?

Theorem

For every tree T there is a d = d(T ) such that every graph G of
average degree ≥ d contains T .
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Trouble with h(P) ≥ 3

Theorem

For every tree T there is a d = d(T ) such that every graph G of
average degree ≥ d contains T .

Proof.

Induction on |T |. If |T | = 1, trivial. Let v be a leaf. Else let
T ′ = T \ {v}, and d(T ) = 2d(T ′) + 4|T |

Let V ′ = {x ∈ V (G ) : deg(x) ≥ d(T )/4}.
Define G ′ = G |V ′

Average degree of G ′ is at least d(T )/2.

Find an embedding of T ′ into G ′.

Since deg(u) ≥ |T | in G , extend the
embedding.

T ′
u

v


