Set families with a forbidden subposet

Boris Bukh

August 2008

Introduction

$$
[n]=\{1, \ldots, n\} \quad 2^{[n]}=\{F: F \subset[n]\}
$$

Definition

Set family is a collection of subsets of [n]. In symbols, $\mathcal{F} \subset 2^{[n]}$.

Theorem (Sperner'28)

Suppose $\mathcal{F} \subset 2^{[n]}$ is a set family such that for no distinct $F_{1}, F_{2} \subset \mathcal{F}$ the inclusion $F_{1} \subset F_{2}$ holds. Then

$$
|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor} .
$$

Reformulation

Definition

P_{1} is a subposet of P_{2} (written $P_{1} \subset P_{2}$) if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

$$
x<_{p_{1}} y \Longrightarrow f(x)<_{p_{2}} f(y)
$$

Examples:

and

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition

P_{1} is a subposet of P_{2} (written $P_{1} \subset P_{2}$) if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

$$
x<_{p_{1}} y \Longrightarrow f(x)<p_{2} f(y)
$$

Examples:

Way of thinking

A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition

P_{1} is a subposet of P_{2} (written $P_{1} \subset P_{2}$) if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

$$
x<p_{1} y \Longrightarrow f(x)<p_{2} f(y)
$$

Examples:

and

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition

P_{1} is a subposet of $P_{2}\left(\right.$ written $\left.P_{1} \subset P_{2}\right)$ if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

$$
x<p_{1} y \Longrightarrow f(x)<p_{2} f(y)
$$

Examples:

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition

P_{1} is a subposet of P_{2} (written $P_{1} \subset P_{2}$) if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

Examples:

$$
x<p_{1} y \Longrightarrow f(x)<p_{2} f(y)
$$

Way of thinking

A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition

P_{1} is a subposet of P_{2} (written $P_{1} \subset P_{2}$) if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

Examples:

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition

P_{1} is a subposet of $P_{2}\left(\right.$ written $\left.P_{1} \subset P_{2}\right)$ if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

Examples:

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition

P_{1} is a subposet of $P_{2}\left(\right.$ written $\left.P_{1} \subset P_{2}\right)$ if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

Examples:

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Definition
P_{1} is a subnoset of $P_{2}\left(\right.$ written $\left.P_{1} \subset P_{2}\right)$ if there is an injective $f: P_{1} \rightarrow P_{2}$ such that

Examples:

Way of thinking

A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Examples:

Way of thinking

A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Examples:

and

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Examples:

$$
0_{b}^{a} \subset \bigodot_{b}^{a} a n d
$$

Way of thinking

A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Examples:

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Reformulation

Examples:

Way of thinking
A set family is a poset under inclusion. For $F_{1}, F_{2} \in \mathcal{F}$ set $F_{1} \leq_{\mathcal{F}} F_{2}$ if $F_{1} \subset F_{2}$.

Theorem (Sperner'28)
$: \not \subset \mathcal{F} \Longrightarrow|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$

Reformulation and the known results

Notation

Largest family in [n] not containing poset P has size

$$
\operatorname{ex}(P, n)=\max _{\substack{P \not \subset \mathcal{F} \\ \mathcal{F} \subset 2^{[n]}}}|\mathcal{F}|
$$

Sperner'28

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{!}{\lfloor }=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\vdots, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because: n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05 Griggs-Katona’08

Reformulation and the known results

Notation

Largest family in [n] not containing poset P has size

$$
\operatorname{ex}(P, n)=\max _{\substack{P \not \subset \mathcal{F} \\ \mathcal{F} \subset 2^{[n]}}}|\mathcal{F}|
$$

Sperner'28

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{(n / 2\rfloor} \\
& \operatorname{ex}\binom{!}{n}=\left(\begin{array}{c}
n \\
n \\
n / 2\rfloor
\end{array}\right)+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\mathbb{d}, n)=2\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Reformulation and the known results

Notation

Largest family in [n] not containing poset P has size

$$
\operatorname{ex}(P, n)=\max _{\substack{P \not \subset \mathcal{F} \\ \mathcal{F} \subset 2^{[n]}}}|\mathcal{F}|
$$

Sperner'28 $\operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor}$
Erdős'45 $\operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}$
Katona-Tarján'83 $\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))$
Thanh'98

$$
\operatorname{ex}(\dot{A}, n)=2\binom{n}{n / 2}(1+O(1 / n))
$$

De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Reformulation and the known results

Notation

Largest family in [n] not containing poset P has size

Sperner'28

$$
\operatorname{ex}(P, n)=\max _{P \not \subset \mathcal{F}}|\mathcal{F}|
$$

Erdős'45

$$
\operatorname{ex}\binom{0}{\lfloor }=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
$$

Katona-Tarján'83

$$
\mathcal{F e x}^{\mathcal{F} \subset x^{[n]}}(, n)=\binom{n}{\lfloor n / 2\rfloor}
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
$$

Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona’08

$$
\operatorname{ex}(\dot{A}, n)=2\binom{n}{n / 2}(1+O(1 / n))
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
$$

Reformulation and the known results

Notation

Largest family in [n] not containing poset P has size

Sperner'28

$$
\left.\operatorname{ex}(P, n)=\max _{\substack{P \not \subset \mathcal{F} \\ \mathcal{F} \in \mathbb{E}(\mathbb{d}}}|\mathcal{F}|, n\right)=\binom{n}{\lfloor n / 2\rfloor}
$$

Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\operatorname{ex}\binom{0}{, n}=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
$$

$$
\operatorname{ex}(\grave{A}, n)=2\binom{n}{n / 2}(1+O(1 / n))
$$

$$
\operatorname{ex}(X, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
$$

Reformulation and the known results

Notation

Largest family in $[n]$ not containing poset P has size

Sperner'28

$$
\left.\operatorname{ex}(P, n)=\max _{\substack{\mathcal{P e x} \\ \mathcal{F} \subset 2!\\!}}|\mathcal{F}|, n\right)=\binom{n}{\lfloor n / 2\rfloor}
$$

Erdős'45
$\mathrm{ex}\left(\begin{array}{l}\mathrm{l} \\ \mathrm{E}\end{array}, n\right)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}$
Katona-Tarján'83 $\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))$
Thanh'98

$$
\operatorname{ex}(\ldots, n)=2\binom{n}{n / 2}(1+O(1 / n))
$$

De Bonis-Katona-Swanepoel'05 Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Reformulation and the known results

Notation

Largest family in [n] not containing poset P has size

Sperner'28

Erdős'45
Katona-Tarján'83 $\mathcal{F e x}\binom{\dagger}{(n)}=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}$
$\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))$
Thanh'98

$$
\operatorname{ex}(\dot{A}, n)=2\binom{n}{n / 2}(1+O(1 / n))
$$

De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

An explanation for the known results

Notation

Largest family in $[n]$ not containing poset P has size

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\operatorname{ex}(P, n)=\max (:, n)=\binom{n}{\lfloor n / 2\rfloor}
$$

$$
\underset{\operatorname{Pex}(!}{ }(, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
$$

$$
\operatorname{ex}(\grave{.}, n)=2\binom{n}{n / 2}(1+O(1 / n))
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona’08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{!}{n}=\binom{n}{\lfloor n / 2\rfloor}+\left(\begin{array}{c}
\lfloor n / 2\rfloor+1
\end{array}\right) \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\vdots, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because: n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona’08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{!}{\lfloor }=\binom{n}{\lfloor n / 2\rfloor}+\left(\begin{array}{c}
\lfloor n / 2\rfloor+1
\end{array}\right) \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\therefore, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{0}{n}=\binom{n}{\lfloor n / 2\rfloor}+\left(\begin{array}{c}
\lfloor n / 2\rfloor+1
\end{array}\right) \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\therefore, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because: n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{0}{n}=\binom{n}{\lfloor n / 2\rfloor}+\left(\begin{array}{c}
\lfloor n / 2\rfloor+1
\end{array}\right) \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\therefore, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because: n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{0}{n}=\binom{n}{\lfloor n / 2\rfloor}+\left(\begin{array}{c}
\lfloor n / 2\rfloor+1
\end{array}\right) \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\therefore, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\therefore: n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{0}{n}=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\therefore, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\therefore: n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Griggs-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{!}{\lfloor }=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n\rfloor}{ n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\vdots, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Conjecture
For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05
Grioos-Katona'08

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\binom{!}{n}=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\mathbb{d}, n)=2\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

$$
\operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
$$

$$
\operatorname{ex}(0 n)-\left(\begin{array}{c}
n \\
n
\end{array}(1+O(1 / n))\right.
$$

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanepoel'05

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\left(\begin{array}{c}
! \\
!
\end{array}, n\right)=\left(\begin{array}{c}
n \\
n \\
\lfloor n / 2\rfloor
\end{array}\right)+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\mathbb{A}, n)=2\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\because, n)=\binom{n}{\lfloor n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1}
\end{aligned}
$$

Conjecture
For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98
De Bonis-Katona-Swanenoel'05
Conjecture
For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28
Erdős'45
Katona-Tarján'83
Thanh'98

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}\left(\begin{array}{l}
\ddagger \\
n
\end{array}, n\right)=\binom{n}{n / 2\rfloor}+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n)) \\
& \operatorname{ex}(\mathbb{d}, n)=2\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

Conjecture
For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28

Erdős'45
Katona-Tarján'83
Thanh'98

$$
\begin{aligned}
& \operatorname{ex}(!, n)=\binom{n}{\lfloor n / 2\rfloor} \\
& \operatorname{ex}(\vdots, n)=\left(\begin{array}{c}
n \\
n \\
\lfloor n / 2\rfloor
\end{array}\right)+\binom{n}{\lfloor n / 2\rfloor+1} \\
& \operatorname{ex}(\because, n)=\binom{n}{n / 2}(1+O(1 / n))
\end{aligned}
$$

$$
\operatorname{ex}(\vdots \quad n)=2(n)(1+O(1 / n))
$$

Conjecture
For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28

Erdős'45
Katona-Tarján'83

Conjecture
For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Sperner'28

Erdős'45

Conjecture
For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union contains no P
Theorem
The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

where $I(P)$ is the largest number of "middle" levels whose union

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

Theorem
The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Conjecture

For a fixed poset P

$$
\operatorname{ex}(P, n)=I(P)\binom{n}{n / 2}(1+O(1 / n))
$$

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Conjecture

For a fixed poset P

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

For a fixed poset P

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is a tree. Namely, if $h(P)$ is the height of P and the Hasse diagram of P is a tree, then

$$
\operatorname{ex}(P, n)=(h(P)-1)\binom{n}{n / 2}(1+O(1 / n))
$$

Qualitatively explains all the previously known result including : poset because $\therefore \subset \chi$
For $h(P)=2$ independently proved by Griggs and Lu. They also proved the conjecture for a large class of posets with $h(P)=2$, whose Hasse diagram is not a tree.

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

- Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
- If $\varepsilon>0$ the average degree of G is at least 100 .

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$:
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.

- If $\varepsilon>0$ the average degree of G is at least 100 .
- Subgraph G^{\prime} in which minimum degree is at least 50. Will embed into G^{\prime}

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$:
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

To embed:

Having embedded:

$$
a^{*}
$$

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

To embed:
 Having embedded: ${ }^{\text {b/W }}$

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

To embed:

Having embedded:

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

To embed:

Having embedded:

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

To embed:

Having embedded:

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

To embed:

Having embedded:

First idea for $h(P)=2$

Have: $|\mathcal{F}| \geq(1+\varepsilon)\binom{n}{n / 2}$, poset $P=:$
Want: an embedding of P into poset (\mathcal{F}, \subset)

Idea

Treat poset (\mathcal{F}, \subset) as a graph, and embed tree into it.

■ Graph G. Vertex set $V(G)=\mathcal{F}$, for $F_{1}, F_{2} \in \mathcal{F}$ edge $F_{1} \sim F_{2}$ if either $F_{1} \subset F_{2}$ or $F_{2} \subset F_{1}$.
■ If $\varepsilon>0$ the average degree of G is at least 100 .
■ Subgraph G^{\prime} in which minimum degree is at least 50 . Will embed into G^{\prime}

To embed:

Having embedded:

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without using minimum degree?
Theorem
For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without
Theorem
For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

Theorem
For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Problem

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P) \geq 3$ instead of graphs have to use $h(P)$-uniform hypergraphs, and there is no good analogue of minimum degree.

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Difficulty

For $h(P)>3$ instead of graphs have to use $h(P)$-uniform
hypergraphs, and there is no good analogue of minimum degree

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.
using minimum degree?

Trouble with $h(P) \geq 3$

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Trouble with $h(P) \geq 3$

Theorem

For every tree T there is a $d=d(T)$ such that every graph G of average degree $\geq d$ contains T.

Proof.

Induction on $|T|$. If $|T|=1$, trivial. Let v be a leaf. Else let $T^{\prime}=T \backslash\{v\}$, and $d(T)=2 d\left(T^{\prime}\right)+4|T|$

- Let $V^{\prime}=\{x \in V(G): \operatorname{deg}(x) \geq d(T) / 4\}$.

Define $G^{\prime}=\left.G\right|_{V^{\prime}}$

- Average degree of G^{\prime} is at least $d(T) / 2$.
- Find an embedding of T^{\prime} into G^{\prime}.

- Since $\operatorname{deg}(u) \geq|T|$ in G, extend the embedding.

