Set families with a forbidden subposet

Boris Bukh

August 2008

Q

{p.a}

{m,a}

,({E} X



Introduction

[N ={1,....,n} 2P ={F:Fc[n]}

Definition

Set family is a collection of subsets of [n]. In symbols, F c 2.

Theorem (Sperner'28)

Suppose F 2" s a set family such that for no distinct
F1, F, C F the inclusion F1 C F, holds. Then

712 (o)

Equality is attained for F = (L[/2J) ={F C[n]:|F|=|n/2]}.



Reformulation

P; is a subposet of P, (written Py C P5) if there is an injective
f: Pt — P> such that

x<p y = f(x) <p, f(y)

Examples: I C [\ and [\ C 9
Way of thinking

A set family is a poset under inclusion. For Fi, Fp € F set
Fi <z Fif F; C Fy.




Reformulation
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A set family is a poset under inclusion. For F;, F» € F set
F<gFif [ CF,.



Reformulation

P1 is a subposet of P, (written Py C P») if there is an injective
f: P — P5 such that

x<p, y = f(x)<p, f(y)a )
Examples: I C [\ and [\ - &
b b b c c

Way of thinking

A set family is a poset under inclusion. For Fi, Fp € F set
FL<gFif L CF,.



Reformulation

P1 is a subposet of P, (written Py C P») if there is an injective
f: P1 — P> such that

xspy = f( )<p2 f(y)a a
Examples: I C / - o
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Way of thinking

A set family is a poset under inclusion. For Fi, Fp € F set
Fi <r Fif FL C F,.
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b
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A set family is a poset under inclusion. For Fi, F, € F set
FL<gFif [ CF,.
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A set family is a poset under inclusion. For Fi, F, € F set
F1 S]: F2 if F1 C FQ.
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A set family is a poset under inclusion. For F, F» € F set
F<gFif [ CF,.
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Examples: I C [\ and [\ C
b
Way of thinking

A set family is a poset under inclusion. For Fi, F» € F set
FL<rFif i C F,.
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Examples: I VA and /N © b
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Way of thinking

A set family is a poset under inclusion. For Fi, Fp € F set
F1 S]: F2 if F1 C F2.




Reformulation

Examples: I C [\ and [\ C ?
b
Way of thinking

A set family is a poset under inclusion. For Fi, Fp € F set
Fi <z Fif FL C Fy.

Theorem (Sperner'28)
IEF = 17 < (ja2)




Reformulation and the known results

Largest family in [n] not containing poset P has size

Z

Fc2li
Sperner'28 ex(t,n) = (|,)2))
Erdés'45 ex(t,n) = (1)2) + (/21 11)
Katona—Tarjan'83 ex(V,n) = (n72) (1+ 0(1/n))
Thanh'98 ex(},n) = 2(n'/’2) (1+ 0(1/n))
De Bonis—Katona-Swanepoel'05  ex(i4,n) = (|,75) + ({n/2)11)
Griggs—Katona'08 ex(N,n) = (n72) (1+ O(1/n))



Reformulation and the known results

Largest family in [n] not containing poset P has size

P¢F

Fc2l
Sperner'28 ex(l,n) = (Ln72J)
Erdds'45 ex(}, n) = (Ln72J) (anﬂ)
Katona—Tarjan'83 ex(V,n) = () (1+O0(1/n))
Thanh'98 ex(f.,n) = 2(,7,) (1 + O(1/n))
De Bonis—Katona—Swanepoel'05 ex(X, n) = (Ln72j) (Ln/2 +1)
Griggs—Katona'08 ex(t, n) = (,),) (1 + O(1/n))



Reformulation and the known results

Largest family in [n] not containing poset P has size

P, n) = F
ex(P.n) = max |7

Pg

Fcall
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(

)= (
)=2
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)= (

n/2 )
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Reformulation and the known results
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v Fc2 ’f /o i
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Reformulation and the known results

Sperner'28 ex(l,n) = (Ln72J)

Erdés'45 ex(}, n) = (Ln72J) (Ln/2J+1)
Katona—Tarjan'83 ex(V,n)=(,7,)(1+ O(1/n))
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An explanation for the known results

Sperner'28 ex(l,n) = (Ln/2J)

Erdds'45 &x(f, 1) = (ny2) + (/) 41)
Katona—Tarjan’'83 ex(V,n) = () (1 + O(1/n))
Thanh'98 ex(},n) = 2(n'/'2) (1+0(1/n))
De Bonis—Katona—Swanepoel'05 ex(}4, n) = (Ln72J) (L"/2J+1)
Griggs—Katona'08 ex(N, n) = (n72) (1+0(1/n))
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De Bonis—Katona—Swanepoel'05 ex(X, n) = (|_nn2j) (Ln/2j+1)
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Katona—Tarjan'83 ex(V,n) = (n’/' )(1+ O(1/n))
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An explanation for the known results

Sperner'28 ex(t,n) = (|,72))

Erdds'45 ex(t,1) = (1)) + ([ny2)11)
Katona-Tarjan’83 ex(V,n) = (n72) (1+0(1/n))
Thanh'98 ex(f.,n) = 2(,7,) (1 + O(1/n))
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An explanation for the known results
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Conjecture

For a fixed poset P

ex(P,n) = I(P )< )(1+O(1/n))

/2

where [(P) is the largest number of “middle” levels whose union
contains no P.



An explanation for the known results
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where [(P) is the largest number of “middle” levels whose union
contains no P.



An explanation for the known results
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Conjecture
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ex(P,n) = I(P )( )(1 + 0(1/n))
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contains no P.
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ConJecture

For a fixed poset P

ex(P,n) = I(P )( /2) (1+0(1/n))

where |(P) is the largest number of “middle” levels whose union
contains no P.
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For a fixed poset P

ex(P,n) = I(P )( )(1—|—O(1/n))

/2

where [(P) is the largest number of “middle” levels whose union
contains no P.

Theorem

The conjecture is true for all the posets P whose Hasse diagram is
a tree. Namely, if h(P) is the height of P and the Hasse diagram
of P is a tree, then

ex(P,n) = (h(P) — 1) (n’;z) (14 O(1/n)).
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An explanation for the known results

For a fixed poset P
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The conjecture is true for all the posets P whose Hasse diagram is
a tree. Namely, if h(P) is the height of P and the Hasse diagram
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An explanation for the known results

Theorem

The conjecture is true for all the posets P whose Hasse diagram is
a tree. Namely, if h(P) is the height of P and the Hasse diagram
of P is a tree, then

ex(P,n) = (h(P) — )( /2) (1+ O(1/n)).



An explanation for the known results

The conjecture is true for all the posets P whose Hasse diagram is
a tree. Namely, if h(P) is the height of P and the Hasse diagram
of P is a tree, then

ex(P,n) = (h(P) — )< /2) (1+ O(1/n)).

Qualitatively explains all the previously known result including K
poset because M C X.

For h(P) = 2 independently proved by Griggs and Lu. They also
proved the conjecture for a large class of posets with h(P) = 2,
whose Hasse diagram is not a tree.
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Treat poset (F,C) as a graph, and embed tree into it.
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First idea for h(P) = 2

Have: |F| > (1 + 5)(n'/’2), poset P =N
Want: an embedding of P into poset (F,C)
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Treat poset (F,C) as a graph, and embed tree into it.
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First idea for h(P) = 2

Have: |F| > (1 + 5)(n'/’2), poset P =N
Want: an embedding of P into poset (F,C)

Treat poset (F,C) as a graph, and embed tree into it.

m Graph G. Vertex set V(G) = F, for F1,F, € F edge F1 ~ F
if either F{ C F> or F» C Fy.

m If € > 0 the average degree of G is at least 100.

m Subgraph G’ in which minimum degree is at least 50. Will
embed into G’

b d

b
To embed: | \ Having embedded: Done next step

a C
a C



Trouble with h(P) > 3

Difficulty

For h(P) > 3 instead of graphs have to use h(P)-uniform
hypergraphs, and there is no good analogue of minimum degree.

Problem

How to embed a tree into a graph of large average degree without
using minimum degree?
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Trouble with h(P) > 3

Theorem

For every tree T there is a d = d(T) such that every graph G of
average degree > d contains T.

Proof.
Induction on |T|. If |T| =1, trivial. Let v be a leaf. Else let
T'=T\{v}, and d(T) =2d(T')+ 4| T|
m Let V' ={x € V(G) :deg(x) > d(T)/4}.
Define G' = G|y

m Average degree of G’ is at least d(T)/2.
m Find an embedding of T’ into G'. 4

m Since deg(u) > |T| in G, extend the
embedding. O




