Turán numbers of theta graphs

Boris Bukh

July 2018

Turán numbers

Forbidden subgraph F. How to make large F-free graph?

$$ex(n, F) = \max_{\substack{G \text{ is } F - free \\ n \text{ vertices}}} e(G)$$

Erdős–Stone'46

$$ex(n,F) = \left(1 - \frac{1}{\chi(F) - 1} + o(1)\right) \binom{n}{2}$$

Turán numbers

Forbidden subgraph F. How to make large F-free graph?

$$ex(n, F) = \max_{\substack{G \text{ is } F - free \\ n \text{ vertices}}} e(G)$$

Erdős–Stone'46

$$ex(n,F) = \left(1 - \frac{1}{\chi(F) - 1} + o(1)\right) \binom{n}{2}$$

Turán numbers

Forbidden subgraph F. How to make large F-free graph?

$$ex(n, F) = \max_{\substack{G \text{ is } F - free \\ n \text{ vertices}}} e(G)$$

Erdős–Stone'46

$$ex(n, F) = \left(1 - \frac{1}{\chi(F) - 1} + o(1)\right) \binom{n}{2}$$
Useless for bipartite F

Complete bipartite graphs:

$$\begin{array}{l} \exp(n, K_{2,2}) \sim n^{3/2} \\ \exp(n, K_{3,3}) \sim n^{2-1/3} \\ \exp(n, K_{s,t}) \sim n^{2-1/t} \quad \text{ if } s > (t-1)! \end{array}$$

Cycles:

 $\operatorname{ex}(n, \mathit{C}_{2\ell}) \leq c_\ell n^{1+1/\ell}$ sharp for $\ell=2,3,5$

Other known ex(n, F) are similar

Upper bounds:

Pigeonhole Easy to challenging

Constructions:

Algebraic graphs Very hard

Theta graph $\Theta_{4,2} = C_8$

Theta graph $\Theta_{4,3}$

Theta graph $\Theta_{4,2} = C_8$

Theta graph $\Theta_{4,3}$

$$\left(\exp(n, C_{2\ell}) \le \exp(n, \Theta_{\ell,t})\right)$$

Upper bounds:

Harder for $\Theta_{\ell,t}$

Constructions: Easier for $\Theta_{\ell,t}$

Faudree–Simonovits'83: $\exp(n, \Theta_{\ell,t}) \leq c_{\ell,t} n^{1+1/\ell}$

where
$$c_{\ell,t} = c_\ell t^{\ell^2}$$

Conlon'14: $ex(n, \Theta_{\ell,t}) \geq \frac{1}{2}n^{1+1/\ell}$

for $t \geq t(\ell)$

Faudree–Simonovits'83: $\exp(n, \Theta_{\ell,t}) \le c_{\ell,t} n^{1+1/\ell}$

where $c_{\ell,t} = c_\ell t^{\ell^2}$

Conlon'14: $ex(n, \Theta_{\ell,t}) \geq \frac{1}{2}n^{1+1/\ell}$

for $t \geq t(\ell)$

Füredi'96:

 $\exp(n,\Theta_{2,t}) \approx \frac{1}{2}\sqrt{t}n^{3/2}$

 $\begin{array}{l} \mathsf{Faudree-Simonovits'83:} \\ \mathsf{ex}(n,\Theta_{\ell,t}) \leq c_{\ell,t} n^{1+1/\ell} \end{array}$

where
$$c_{\ell,t} = c_\ell t^{\ell^2}$$

Conlon'14: $ex(n, \Theta_{\ell,t}) \geq \frac{1}{2}n^{1+1/\ell}$ fo

for $t \geq t(\ell)$

Füredi'96:

 $\exp(n,\Theta_{2,t}) \approx \frac{1}{2}\sqrt{t}n^{3/2}$

Theorem (B.-Tait'18)

For any ℓ , we have $ex(n, \Theta_{\ell,t}) \leq c_{\ell} t^{1-1/\ell} \cdot n^{1+1/\ell}$ For odd ℓ , we have $ex(n, \Theta_{\ell,t}) \geq c'_{\ell} t^{1-1/\ell} \cdot n^{1+1/\ell}$

 $\begin{array}{l} \mathsf{Faudree-Simonovits'83:} \\ \mathsf{ex}(n,\Theta_{\ell,t}) \leq c_{\ell,t} n^{1+1/\ell} \end{array}$

where
$$c_{\ell,t} = c_\ell t^{\ell^2}$$

Conlon'14: $\exp(n, \Theta_{\ell,t}) \geq \frac{1}{2}n^{1+1/\ell}$ for

for $t \geq t(\ell)$

Füredi'96: $ex(n, \Theta_{2,t}) \approx \frac{1}{2}\sqrt{t}n^{3/2}$

Theorem (B.–Tait'18)

- For any ℓ , we have $\exp(n, \Theta_{\ell,t}) \leq c_\ell t^{1-1/\ell} \cdot n^{1+1/\ell}$
- For odd ℓ , we have $\exp(n, \Theta_{\ell,t}) \ge c'_{\ell} t^{1-1/\ell} \cdot n^{1+1/\ell}$
- For even ℓ , we have $\exp(n,\Theta_{\ell,t})\geq c_\ell't^{1/\ell}\cdot n^{1+1/\ell}$

Random algebraic constructions:

$$\begin{array}{lll} & \mathcal{K}_{s,t(s)}\text{-}\mathsf{free} & n^{2-1/s} \; \mathsf{edges} & \mathsf{Blagojević}\text{-}\mathsf{B}\text{-}\mathsf{Karasev'11} \\ & \mathcal{K}_{s,t(s)}\text{-}\mathsf{free} & n^{2-1/s} \; \mathsf{edges} & \mathsf{B}\text{.'14} \\ & \Theta_{\ell,t(\ell)}\text{-}\mathsf{free} & n^{1+1/t} \; \mathsf{edges} & \mathsf{Conlon'14} \end{array}$$

÷

Blowing up Conlon:

Random algebraic constructions:

$$\begin{array}{lll} & \mathcal{K}_{s,t(s)}\text{-}\mathsf{free} & n^{2-1/s} \; \mathsf{edges} & \mathsf{Blagojević}\text{-}\mathsf{B}\text{-}\mathsf{Karasev'11} \\ & \mathcal{K}_{s,t(s)}\text{-}\mathsf{free} & n^{2-1/s} \; \mathsf{edges} & \mathsf{B}\text{.'14} \\ & \Theta_{\ell,t(\ell)}\text{-}\mathsf{free} & n^{1+1/t} \; \mathsf{edges} & \mathsf{Conlon'14} \end{array}$$

÷

Blowing up Conlon:

Random algebraic constructions:

$$K_{s,t(s)}$$
-free $n^{2-1/s}$ edges Blagojević–B.-Karasev'11
 $K_{s,t(s)}$ -free $n^{2-1/s}$ edges B.'14
 $\Theta_{\ell,t(\ell)}$ -free $n^{1+1/t}$ edges Conlon'14

Blowing up Conlon:

Consider $\Theta_{\ell,T}$: Endpoints x, y

Random algebraic constructions:

$$\begin{array}{lll} & \mathcal{K}_{s,t(s)}\text{-}\mathsf{free} & n^{2-1/s} \; \mathsf{edges} & \mathsf{Blagojević}\text{-}\mathsf{B}\text{-}\mathsf{Karasev'11} \\ & \mathcal{K}_{s,t(s)}\text{-}\mathsf{free} & n^{2-1/s} \; \mathsf{edges} & \mathsf{B}\text{.'14} \\ & \Theta_{\ell,t(\ell)}\text{-}\mathsf{free} & n^{1+1/t} \; \mathsf{edges} & \mathsf{Conlon'14} \end{array}$$

Blowing up Conlon:

Consider $\Theta_{\ell,T}$: Endpoints x, y

Key observation:

x, y are in different blobs because ℓ is odd

Conclusion:

 $\Theta_{\ell,\mathcal{T}/c}$ in original

Easy result: $ex(n, \{C_3, C_4, ..., C_{2\ell}\}) \le n^{1+1/\ell}$

Easy proof:

- **1** *G* contains no $C_3, C_4, \ldots, C_{2\ell}$
- 2 Without much loss, G is regular

Easy result: $ex(n, \{C_3, C_4, ..., C_{2\ell}\}) \le n^{1+1/\ell}$

Easy proof:

1 *G* contains no $C_3, C_4, \ldots, C_{2\ell}$

2 Without much loss, G is regular

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \le ct^{2/3}n^{4/3}$

Proof:

2 Def: Bad vertex

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

2 Def: Bad vertex

3 Does not occur

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

4 Grow tree

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

1 Without much loss, *G* is *d*-regular and bipartite

3 Does not occur

4 Grow tree

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

4 Grow tree

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

2 Def: Bad vertex

3 Does not occur

4 Grow tree

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

2 Def: Bad vertex

3 Does not occur

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

1 Without much loss, *G* is *d*-regular and bipartite

5 Suppose $2t^2$ paths back

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

1 Without much loss, *G* is *d*-regular and bipartite

5 Suppose $2t^2$ paths back

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

1 Without much loss, *G* is *d*-regular and bipartite

5 Suppose $2t^2$ paths back

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

1 Without much loss, *G* is *d*-regular and bipartite

5 Suppose $2t^2$ paths back

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

1 Without much loss, *G* is *d*-regular and bipartite

5 Suppose $2t^2$ paths back

Easiest new case: $ex(n, \Theta_{3,t}) \leq ct^{2/3}n^{4/3}$

Proof:

 $\exp(n,\Theta_{3.t}) \leq ct^{2/3}n^{4/3}$ Easiest new case:

Proof:

1 Without much loss, G is d-regular and bipartite

5 Suppose $2t^2$ paths back

 $2t^2$

That is all

Now what about $ex(n, \{C_3, ..., C_{2\ell}\})$?