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Addition and multiplication are separate

The sumset A + B = {a + b : a ∈ A, b ∈ B}
The productset AB = {ab : a ∈ A, b ∈ B}

Examples:
A = {1, 2, 3, 4, . . . , n} |A + A| = 2n − 1
A = {1, 2, 4, 8, . . . , 2n} |A + A| = n(n + 1)/2

Theorem (Erdős–Szemerédi’83)

If A ⊂ R is a finite set, then

|A + A|+ |AA| � |A|1+c

for some absolute constant c > 0.
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The productset AB = {ab : a ∈ A, b ∈ B}

Examples:
A = {1, 2, 3, 4, . . . , n} |A + A| = 2n − 1
A = {1, 2, 4, 8, . . . , 2n} |A + A| = n(n + 1)/2

Theorem (Erdős–Szemerédi’83, . . . , Solymosi’08)

If A ⊂ R is a finite set, then

|A + A|+ |AA| � |A|1+c

for c = 1/3− o(1).



Addition and multiplication are separate

Theorem (Bourgain–Katz–Tao’04)

If A ⊂ Fp is of size pε ≤ |A| ≤ p1−ε, then

|A + A|+ |AA| � |A|1+c

for some constant c = c(ε).

Six years and dozens of papers later:

|A+A|+|AA| �



|A|13/12, if |A| ≤ p1/2,

|A|13/12(|A|/√p)1/12−o(1), if p1/2 ≤ |A| ≤ p35/68,

|A|(p/|A|)1/11−o(1), if p35/68 ≤ |A| ≤ p13/24,

|A| · |A|/√p, if p13/24 ≤ |A| ≤ p2/3,

|A|(p/|A|)1/2, if |A| > p2/3.
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Rational functions

A rational function f (x , y) is called composite if it is of the form
f (x , y) = F (g(x , y)) for some F of degree deg F ≥ 2.

Theorem (Elekes–Rónyai’00)

Suppose f (x , y) ∈ R(x , y) is non-composite of degree d, and is not

of the form g(x) + h(y), g(x)h(y) or g(x)+h(y)
1−g(x)h(y) . If |A| = |B| = n,

then
|f (A,B)| �d n1+c(d).

x+y
1−xy = G (h(x)h(y)) where G (x) = x−1

i(x+1) and h(x) = 1+ix
1−ix .
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Rational functions

State of knowledge modulo p:

Theorem (Vu’08 after Hart–Iosevich–Solymosi’07)

If f (x , y) ∈ Fp[x , y ] is a non-composite polynomial of degree d,
which is not of the form ax + by, and |A| > p1/2, then

|A + A|+ |f (A,A)| �d

{
|A|(|A|√p)1/2, if |A| ≤ p7/10,

|A|(p/|A|)1/3, if |A| ≥ p7/10.



New results

Class Valid for Why bother? Main ideas

“Small sets”
Special functions

Applications Combinatorial
Any |A|

“Large sets”
All functions

Look ahead Algebraic|A| > p1/2



New results: small sets

Theorem

Let f ∈ Fp[X ] be a polynomial of degree d ≥ 2. Then for every set
A ⊂ Fp of size |A| ≤ √

p we have

|A + A|+ |f (A) + f (A)| � |A|1+
1

16·6d .

Theorem

Suppose f =
∑k

i=1 aix
di ∈ Fp[X ] is a polynomial with k terms and

degree d. Then for every ε > 0, and every set A ⊂ Fp of size
pε ≤ |A| ≤ √

p we have

|AA|+ |f (A) + f (A)| � |A|1+c ,

where c = c(ε, k, d).

Moreover, the dependence on d is
logarithmic.
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New results: small sets

Theorem

Let f ∈ Fp[X ] be a polynomial of degree d ≥ 2. Then for every set
A ⊂ Fp of size |A| ≤ √

p we have
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16·6d .
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New results: large sets

Theorem

Let f (x) ∈ Fp(x), g(x , y) ∈ Fq(x , y) be non-constant rational
functions, and g(x , y) is not of the form G (af (x) + bf (y) + c),
G (x), or G (y). If |A| ≥ √

p, then

|f (A) + f (A)|+ |g(A,A)| �

{
|A|(|A|/√p)1/2, if |A| ≤ p7/10,

|A|(p/|A|)1/3, if |A| ≥ p7/10.

Theorem

Let f (x , y) ∈ Fp[x , y ] be a polynomial of degree d which is
non-composite, and is not of the form g(x) + h(y) or g(x)h(y).
Suppose f (x , y) is monic in each variable. Then if |A| = |B| = n,

|f (A,B)| �d n1+c , for p7/8+ε ≤ n ≤ p1−ε.
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Combinatorial idea: cloning

Whenever there is a single copy of an object,
there are several overlapping copies.

Example:

Turán’s theorem
regularity

=⇒ Erdős–Stone theorem
There is a Kt =⇒ There is every t-chromatic graph

=⇒

Proof sketch (regularity-free):
Given graph G of density 1

2 + ε. Turán gives many copies of K3 in
G . Some of these copies must share a pair of vertices by the
pigeonhole principle.
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Combinatorial idea: cloning

Given a set A and a function f . If B = f (A,A) is small, |B| ∼ |A|,

|f (A,A)| ∼ |A| =⇒ |A|2 solutions to f (a1, a2) = b

=⇒ |A|3 solutions to f (a1, a2) = f (a3, a4)

=⇒ |A|3 solutions to

{
f (a1, a2) = f (a3, a4),

f (a2, a3) = b

=⇒ |A|4 solutions to

{
f (a1, a2) = f (a3, a4),

f (a2, a3) = f (a5, a6)

=⇒ and so forth
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Combinatorial idea: cloning

Example:
If f (x , y) = x + y , then f (A,A) = A + A.

|A + A| ∼ |A| =⇒ |A|2 solutions to a1 + a2 = b

=⇒ |A|3 solutions to a1 + a2 = a3 + a4

=⇒ |A|3 solutions to a1 + a2 − a3 = a4

approx .
=⇒ |A + A− A| ∼ |A|

Theorem (Balog–Szemerédi–Gowers, Sudakov–Szemerédi–Vu)

Suppose |A| ∼ |B| and a1 + a2 + a3 = b has many solutions in
a1, a2, a3 ∈ A, b ∈ B. Then there is large A′ ⊂ A such that
|A′ + A′ + A′| ∼ |A|.
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Proof of |A + A|+ |f (A) + f (A)| ≥ |A|1+c(d).

Let deg f = d . Induction on d . Proof by contradiction.

Base case d = 2: similar to d − 1 =⇒ d , but slightly harder.
Induction step, d ≥ 3:

|A + A| ∼ |A| =⇒ many solutions to a1 + a2 = a3 + a4

There is a t with many solutions to a1 − a3 = t

A′ = {a ∈ A : a + t ∈ A} has about |A| elements

Let g(x) = f (x + t)− f (x).
g(A′) + g(A′) ⊂ f (A)− f (A) + f (A)− f (A)

|f (A) + f (A)| ∼ |A| =⇒ |f (A)− f (A) + f (A)− f (A)| ∼ |A|
|A′ + A′| ≤ |A + A| ∼ |A|. Done by induction applied to A′

and g .
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Combinatorial idea: pigeonhole

Suppose |AA| and f (A) + f (A) are small. Then what?

If f (x) = x , then AA or A + A is large by the sum-product.

If f (x) = x2, then B = f (A) satisfies |BB| = |AA|. But BB
and B + B are small.

If f (x) = x + x2, then

f (A)− f (A) + f (A)− f (A) + · · · is
small

There is a t and a large At ⊂ A such that tAt ⊂ A.

Hence f (t1At1)− f (t2At2) + · · ·+ f (tkAtk ) is small.

Imaging At1 = · · · = Atk = A′. For
g(x) = (t2

1 − t2
2 + t2

3 · · · )x2 + (t1 − t2 + t3 · · · )x , we have
g(A) + · · ·+ g(A) is small.

If t1 − t2 + t3 · · · = 0, then done by the above.

There are many t. By the pigeonhole there is a solution to
t1 + t3 · · · = t2 + t4 · · ·
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The End


