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Addition and mulktiplication are separate

The sumset A+B={a+b:acA be B}
The productset AB={ab:ac A, be B}
Examples:
A={1,2,3,4,... n} A+ Al =2n-1
A=1{1,2,4,8,...,2"} A+ Al =n(n+1)/2

Theorem (Erdés—Szemerédi'83)

If AC R is a finite set, then
|A+ Al + |AA| > |A]FTe

for some absolute constant ¢ > 0.
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The productset AB={ab:ac A, be B}
Examples:
A={1,2,3,4,... n} A+ Al =2n-1
A=1{1,2,4,8,...,2"} A+ Al =n(n+1)/2

Theorem (Erdés—Szemerédi'83, ..., Solymosi'08)

If AC R is a finite set, then
|A+ Al + |AA| > |A]FTe

for c =1/3 — o(1).



Addition and mulktiplication are separate

Theorem (Bourgain—Katz—Tao'04)
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for some constant ¢ = c(e).
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Addition and mulktiplication are separate

Theorem (Bourgain—Katz—Tao'04, Bourgain—Konyagin'03)
If ACTF, is of sizel < |A| < p'=¢, then

|A+ Al + |AA| > |A]FTe

for some constant ¢ = c(e).

Six years and dozens of papers later:

(1A12/%2, 1Al < pt/2
|A|13/12(‘A‘/\/ﬁ)1/12_0(1), if p1/2 < ‘A‘ < p35/687
|A+A|+|AA| > < |A|(p/|A])Y o), if p35/68 < |A| < pl3/24,
Al -|Al//P, if p13/24 < |A| < p?/3,
[A[(p/|ANY2, if |A] > p2/3.




R_ational functions

A rational function f(x,y) is called composite if it is of the form
f(x,y) = F(g(x,y)) for some F of degree deg F > 2.

Theorem (Elekes—Rényai'00)

|

Suppose f(x,y) € R(x,y) is non-composite of degree d, and is not

?;: the form g(x) + h(y), g(x)h(y) or % If|A| = |B| =n,
en

(A, B)| >4 nt*+e(@).



R_ational functions

A rational function f(x,y) is called composite if it is of the form
f(x,y) = F(g(x,y)) for some F of degree deg F > 2.

Theorem (Elekes—Rényai'00)

|

Suppose f(x,y) € R(x,y) is non-composite of degree d, and is not
(x)+h(y) _
?;: the form g(x) + h(y), g(x)h(y) or % If|Al = |B|] = n,
en

(A, B)| >4 nt*+e(@).

% = G(h(x)h(y)) where G(x) =

and h(x) = 1,

l(x+1)



R_ational functions

State of knowledge modulo p:

Theorem (Vu'08 after Hart—losevich-Solymosi’'07)

If f(x,y) € Fp[x, y] is a non-composite polynomial of degree d,
which is not of the form ax + by, and |A| > p/?, then

Al(|Aly/B)2, if |A] < pT/1°,

A+ Al +|F(A A) >



New results

Class Valid for Why bother? Main ideas

Special functions

Any |A| Applications  Combinatorial

“Small sets”

All functions

“Large sets” Al > P12

Look ahead Algebraic




New results: small sets

Let f € Fp[X] be a polynomial of degree d > 2. Then for every set
A C T, of size |A| < \/p we have

1
A+ Al + |F(A) + F(A)] > |A] o7 .
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Let f € Fy[X] be a polynomial of degree d > 2. Then for every set
A C T, of size |A| < \/p we have

A+ Al + [F(A) + F(A)] > |A]" o

Theorem

Suppose f = Z, 1 aix% € Fp[X] is a polynomial with k terms and
degree d. Then for every € > 0, and every set A C [, of size
p° < |A| < \/p we have

[AA| + [£(A) + F(A)] > |A[F,

where ¢ = c(e, k, d).



New results: small sets

Let f € Fy[X] be a polynomial of degree d > 2. Then for every set
A C T, of size |A| < \/p we have

A+ Al + [F(A) + F(A)] > |A]" o

Theorem

Suppose f = Z, 1 aix% € Fp[X] is a polynomial with k terms and
degree d. Then for every € > 0, and every set A C [, of size
p° < |A| < \/p we have

[AA| + [£(A) + F(A)] > |A[F,

where ¢ = c(e, k, d). Moreover, the dependence on d is
logarithmic.



New results: larae sets

Theorem

Let f(x) € Fp(x), g(x,y) € Fq(x,y) be non-constant rational
functions, and g(x,y) is not of the form G(af(x) + bf(y) + ¢),
G(x), or G(y). If|A| > /p, then

|AI(JAl//P)Y/2, if |A] < pT/10,
f(A)+ f(A) + |g(A A)| >



New results: larae sets

Theorem

Let f(x) € Fp(x), g(x,y) € Fq(x,y) be non-constant rational
functions, and g(x,y) is not of the form G(af(x) + bf(y) + c),
G(x), or G(y). If|A| > /p, then

|AI(JAl//P)Y/2, if |A] < pT/10,
f(A)+ f(A)| + |g(A A)| >

Theorem

Let f(x,y) € Fp[x, y] be a polynomial of degree d which is
non-composite, and is not of the form g(x) + h(y) or g(x)h(y).
Suppose f(x,y) is monic in each variable. Then if |A| = |B| = n,

f(A, B)| >q n'*c,  forp’/Bt <n < ple.



Comerinatorial idea: cloning

Whenever there is a single copy of an object,
there are several overlapping copies.
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Comerinatorial idea: cloning

Whenever there is a single copy of an object,
there are several overlapping copies.

Example:

, regularity .
Turdn’s theorem — Erdbs—Stone theorem

There is a K; == There is every t-chromatic graph
A = 2

Proof sketch (regularity-free):

Given graph G of density % + €. Turdn gives many copies of K3 in
G. Some of these copies must share a pair of vertices by the
pigeonhole principle.



Comerinatorial idea: cloning

Given a set A and a function f. If B = f(A, A) is small, |B| ~ |A],

|f(A, A)| ~ |A| = |AJ? solutions to f(ay,ap) = b



Comerinatorial idea: cloning

Given a set A and a function f. If B = f(A, A) is small, |B| ~ |A],

|f(A, A)| ~ |A| = |AJ? solutions to f(ay,ap) = b
— |AJ? solutions to (a1, a2) = f(as3, as)



Comerinatorial idea: cloning

Given a set A and a function f. If B = f(A, A) is small, |B| ~ |A],

|f(A, A)| ~ |A| = |AJ? solutions to f(ay,ap) = b
— |AJ? solutions to (a1, a2) = f(as3, as)

f(a1,a2) = (33,«94),

— |AJ® solutions to
f(az,a3) =



Comerinatorial idea: cloning

Given a set A and a function f. If B = f(A, A) is small, |B| ~ |A],

|f(A, A)| ~ |A| = |AJ? solutions to f(ay,ap) = b
— |AJ? solutions to (a1, a2) = f(as3, as)

f ) - f , ,
= |A|3 solutions to (a1, 22) (a3, as)

f(a27 33) =b

f ) - f , ,
— |A|* solutions to (a1, 22) (a3, as)

f(a27 33) = f(a5, 36)

— and so forth



Comerinatorial idea: cloning

Example:
If f(x,y) =x+y, then f(A;A) = A+ A.
|A+4 Al ~ |A| = |AJ? solutions to a; +a» = b
— |AJ® solutions to a; + a» = a3 + a4

= |A|3 solutions to a1 + ap — a3 = a4
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|A+4 Al ~ |A| = |AJ? solutions to a; +a» = b
— |AJ® solutions to a; + a» = a3 + a4

= |A|3 solutions to a1 + ap — a3 = a4

Theorem (Balog—Szemerédi—-Gowers, Sudakov-Szemerédi-Vu)

Suppose |A| ~ |B| and a1 + a» + az = b has many solutions in
ai,az,as € A,b € B. Then there is large A’ C A such that
A+ A+ Al ~ A



Comerinatorial idea: cloning

Example:
If f(x,y) =x+y, then f(A;A) = A+ A.
|A+4 Al ~ |A| = |AJ? solutions to a; +a» = b
— |AJ® solutions to a; + a» = a3 + a4
— |AJ® solutions to a; + a» — a3 = a4

LA+ A- A~ A

Theorem (Balog—Szemerédi—-Gowers, Sudakov-Szemerédi-Vu)

Suppose |A| ~ |B| and a1 + a» + az = b has many solutions in
ai,az,az € A,b € B. Then there is large A’ C A such that
A+ A+ Al ~ |A].




Proos of |A+ Al + |f(A) + f(A)] > |Al1+),

Let deg f = d. Induction on d. Proof by contradiction.
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Proot of |A+ Al + |f(A) + f(A)| > |Al1+<d)

Let deg f = d. Induction on d. Proof by contradiction.

Induction step, d > 3:
m |A+ A| ~ |A| = many solutions to a; + a» = a3 + as
m There is a t with many solutions to a; — a3 =t
m A ={ac A:a+te A} has about |A| elements
m Let g(x) = f(x+t) — f(x).
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Proot of |[A+ Al +|f(A) + F(A)] > A1+,

Let deg f = d. Induction on d. Proof by contradiction.

Induction step, d > 3:

|A+ A| ~ |A] = many solutions to a; + ap = a3z + a4

m There is a t with many solutions to a; — a3 =t

m A ={ac A:a+te A} has about |A| elements

m Let g(x) = f(x+t) — f(x).

g(A) + g(A) C f(A) = f(A) + f(A) — f(A)

[£(A) + F(A) ~ [Al = [F(A) = F(A) + F(A) = F(A)] ~ |A]
m A+ A| <|A+ A| ~ |A|. Done by induction applied to A’
and g.

N\
0o



Proot of |[A+ Al +|f(A) + F(A)] > A1+,

Let deg f = d. Induction on d. Proof by contradiction.
Base case d = 2: similar to d — 1 = d, but slightly harder.
Induction step, d > 3:

|A+ A| ~ |A] = many solutions to a; + ap = a3z + a4

m There is a t with many solutions to a; — a3 =t

m A ={ac A:a+te A} has about |A| elements

m Let g(x) = f(x+t) — f(x).

g(A) + g(A) C f(A) = f(A) + f(A) — f(A)

[£(A) + F(A) ~ [Al = [F(A) = F(A) + F(A) = F(A)] ~ |A]
m A+ A| <|A+ A| ~ |A|. Done by induction applied to A’
and g.

N\
0o



Comerinatorial idea: piceonhole

Suppose |AA| and f(A) + f(A) are small. Then what?
m If f(x) = x, then AAor A+ A is large by the sum-product.
m If f(x) = x2, then B = f(A) satisfies |BB| = |AA|. But BB
and B 4 B are small.
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m If f(x) = x, then AAor A+ A is large by the sum-product.
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and B 4 B are small.
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small

m Thereis a t and a large A; C A such that tA; C A.
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gx)=(2—t3+t3- x>+ (t1 — ta+ t3- -+ )x, we have
g(A) + -+ g(A) is small.



Comerinatorial idea: piceonhole

Suppose |AA| and f(A) + f(A) are small. Then what?

If f(x) = x, then AA or A+ Ais large by the sum-product.
If f(x) = x2, then B = f(A) satisfies |BB| = |AA|. But BB
and B + B are small.

If f(x) = x + x2, then f(A) — f(A) + f(A) — f(A) + - is
small

There is a t and a large A; C A such that tA; C A.

Hence f(t1Ay) — f(t2Ay,) + - - + f(tAg ) is small.
Imaging Ay, = --- = Ay, = A For
gx)=(2—t3+t3- x>+ (t1 — ta+ t3- -+ )x, we have
g(A) + -+ g(A) is small.

If t — to + t3--- = 0, then done by the above.



Comerinatorial idea: piceonhole

Suppose |AA| and f(A) + f(A) are small. Then what?

If f(x) = x, then AA or A+ Ais large by the sum-product.
If f(x) = x2, then B = f(A) satisfies |BB| = |AA|. But BB
and B + B are small.

If f(x) = x + x2, then f(A) — f(A) + f(A) — f(A) + - is
small

There is a t and a large A; C A such that tA; C A.

Hence f(t1Ay) — f(t2Ay,) + - - + f(tAg ) is small.
Imaging Ay, = --- = Ay, = A For
gx)=(2—t3+t3- x>+ (t1 — ta+ t3- -+ )x, we have
g(A) + -+ g(A) is small.

If t — to + t3--- = 0, then done by the above.

There are many t. By the pigeonhole there is a solution to
t1+t3---=th+tg---



The End



