Sum-product estimates for rational functions

Boris Bukh

May 2010

A story of a romance Between Graphs and arithmetic

Joint work with Jacob Tsimerman

Addition and multiplication are separate

The sumset
The productset

$$
\begin{aligned}
A+B & =\{a+b: a \in A, b \in B\} \\
A B & =\{a b: a \in A, b \in B\}
\end{aligned}
$$

Examples:

$$
\begin{array}{ll}
A=\{1,2,3,4, \ldots, n\} & |A+A|=2 n-1 \\
A=\left\{1,2,4,8, \ldots, 2^{n}\right\} & |A+A|=n(n+1) / 2
\end{array}
$$

Theorem (Erdős-Szemerédi'83)

If $A \subset \mathbb{R}$ is a finite set, then

$$
|A+A|+|A A| \gg|A|^{1+c}
$$

for some absolute constant $c>0$.

Addition and multiplication are separate

The sumset
The productset

$$
\begin{aligned}
A+B & =\{a+b: a \in A, b \in B\} \\
A B & =\{a b: a \in A, b \in B\}
\end{aligned}
$$

Examples:

$$
\begin{array}{ll}
A=\{1,2,3,4, \ldots, n\} & |A+A|=2 n-1 \\
A=\left\{1,2,4,8, \ldots, 2^{n}\right\} & |A+A|=n(n+1) / 2
\end{array}
$$

Theorem (Erdős-Szemerédi'83, ..., Solymosi'08)

If $A \subset \mathbb{R}$ is a finite set, then

$$
|A+A|+|A A| \gg|A|^{1+c}
$$

for $c=1 / 3-o(1)$.

Addition and multiplication are separate

$$
\begin{aligned}
& \text { Theorem (Bourgain-Katz-Tao'04) } \\
& \text { If } A \subset \mathbb{F}_{p} \text { is of size } p^{\epsilon} \leq|A| \leq p^{1-\epsilon} \text {, then } \\
& \qquad|A+A|+|A A| \gg|A|^{1+c}
\end{aligned}
$$

for some constant $c=c(\epsilon)$.

Addition and multiplication are separate

Theorem (Bourgain-Katz-Tao'04, Bourgain-Konyagin'03)
If $A \subset \mathbb{F}_{p}$ is of size $1 \leq|A| \leq p^{1-\epsilon}$, then

$$
|A+A|+|A A| \gg|A|^{1+c}
$$

for some constant $c=c(\epsilon)$.

Addition and multiplication are separate

Theorem (Bourgain-Katz-Tao'04, Bourgain-Konyagin'03)

If $A \subset \mathbb{F}_{p}$ is of size $1 \leq|A| \leq p^{1-\epsilon}$, then

$$
|A+A|+|A A| \gg|A|^{1+c}
$$

for some constant $c=c(\epsilon)$.

Six years and dozens of papers later:

$$
|A+A|+|A A| \gg \begin{cases}|A|^{13 / 12}, & \text { if }|A| \leq p^{1 / 2}, \\ |A|^{13 / 12}(|A| / \sqrt{p})^{1 / 12-o(1)}, & \text { if } p^{1 / 2} \leq|A| \leq p^{35 / 68}, \\ |A|(p /|A|)^{1 / 11-o(1)}, & \text { if } p^{35 / 68} \leq|A| \leq p^{13 / 24} \\ |A| \cdot|A| / \sqrt{p}, & \text { if } p^{13 / 24} \leq|A| \leq p^{2 / 3} \\ |A|(p /|A|)^{1 / 2}, & \text { if }|A|>p^{2 / 3}\end{cases}
$$

Rational functions

A rational function $f(x, y)$ is called composite if it is of the form $f(x, y)=F(g(x, y))$ for some F of degree $\operatorname{deg} F \geq 2$.

Theorem (Elekes-Rónyai'00)

Suppose $f(x, y) \in \mathbb{R}(x, y)$ is non-composite of degree d, and is not of the form $g(x)+h(y), g(x) h(y)$ or $\frac{g(x)+h(y)}{1-g(x) h(y)}$. If $|A|=|B|=n$, then

$$
|f(A, B)| \gg_{d} n^{1+c(d)} .
$$

Rational functions

A rational function $f(x, y)$ is called composite if it is of the form $f(x, y)=F(g(x, y))$ for some F of degree $\operatorname{deg} F \geq 2$.

Theorem (Elekes-Rónyai'00)

Suppose $f(x, y) \in \mathbb{R}(x, y)$ is non-composite of degree d, and is not of the form $g(x)+h(y), g(x) h(y)$ or $\frac{g(x)+h(y)}{1-g(x) h(y)}$. If $|A|=|B|=n$, then

$$
|f(A, B)| \gg_{d} n^{1+c(d)} .
$$

$\frac{x+y}{1-x y}=G(h(x) h(y))$ where $G(x)=\frac{x-1}{i(x+1)}$ and $h(x)=\frac{1+i x}{1-i x}$.

Rational functions

State of knowledge modulo p :

Theorem (Vu'08 after Hart-losevich-Solymosi'07)

If $f(x, y) \in \mathbb{F}_{p}[x, y]$ is a non-composite polynomial of degree d, which is not of the form $a x+$ by, and $|A|>p^{1 / 2}$, then

$$
|A+A|+|f(A, A)|>_{d} \begin{cases}|A|(|A| \sqrt{p})^{1 / 2}, & \text { if }|A| \leq p^{7 / 10} \\ |A|(p /|A|)^{1 / 3}, & \text { if }|A| \geq p^{7 / 10}\end{cases}
$$

New results

Class Valid for Why bother? Main ideas
"Small sets" $\begin{gathered}\text { Special functions } \\ \text { Any }|A|\end{gathered}$ Applications Combinatorial
"Large sets"
All functions
$|A|>p^{1 / 2}$
Look ahead Algebraic

New results: small sets

Theorem

Let $f \in \mathbb{F}_{p}[X]$ be a polynomial of degree $d \geq 2$. Then for every set $A \subset \mathbb{F}_{p}$ of size $|A| \leq \sqrt{p}$ we have

$$
|A+A|+|f(A)+f(A)| \gg|A|^{1+\frac{1}{16 \cdot 6^{d}}}
$$

New results: small sets

Theorem

Let $f \in \mathbb{F}_{p}[X]$ be a polynomial of degree $d \geq 2$. Then for every set $A \subset \mathbb{F}_{p}$ of size $|A| \leq \sqrt{p}$ we have

$$
|A+A|+|f(A)+f(A)| \gg|A|^{1+\frac{1}{16 \cdot 6^{d}}}
$$

Theorem

Suppose $f=\sum_{i=1}^{k} a_{i} x^{d_{i}} \in \mathbb{F}_{p}[X]$ is a polynomial with k terms and degree d. Then for every $\varepsilon>0$, and every set $A \subset \mathbb{F}_{p}$ of size $p^{\varepsilon} \leq|A| \leq \sqrt{p}$ we have

$$
|A A|+|f(A)+f(A)| \gg|A|^{1+c}
$$

where $c=c(\varepsilon, k, d)$.

New results: small sets

Theorem

Let $f \in \mathbb{F}_{p}[X]$ be a polynomial of degree $d \geq 2$. Then for every set $A \subset \mathbb{F}_{p}$ of size $|A| \leq \sqrt{p}$ we have

$$
|A+A|+|f(A)+f(A)| \gg|A|^{1+\frac{1}{16 \cdot 6^{d}}}
$$

Theorem

Suppose $f=\sum_{i=1}^{k} a_{i} x^{d_{i}} \in \mathbb{F}_{p}[X]$ is a polynomial with k terms and degree d. Then for every $\varepsilon>0$, and every set $A \subset \mathbb{F}_{p}$ of size $p^{\varepsilon} \leq|A| \leq \sqrt{p}$ we have

$$
|A A|+|f(A)+f(A)| \gg|A|^{1+c}
$$

where $c=c(\varepsilon, k, d)$. Moreover, the dependence on d is logarithmic.

New results: large sets

Theorem

Let $f(x) \in \mathbb{F}_{p}(x), g(x, y) \in \mathbb{F}_{q}(x, y)$ be non-constant rational functions, and $g(x, y)$ is not of the form $G(a f(x)+b f(y)+c)$, $G(x)$, or $G(y)$. If $|A| \geq \sqrt{p}$, then

$$
|f(A)+f(A)|+|g(A, A)| \gg \begin{cases}|A|(|A| / \sqrt{p})^{1 / 2}, & \text { if }|A| \leq p^{7 / 10} \\ |A|(p /|A|)^{1 / 3}, & \text { if }|A| \geq p^{7 / 10}\end{cases}
$$

New results: larce sets

Theorem

Let $f(x) \in \mathbb{F}_{p}(x), g(x, y) \in \mathbb{F}_{q}(x, y)$ be non-constant rational functions, and $g(x, y)$ is not of the form $G(a f(x)+b f(y)+c)$, $G(x)$, or $G(y)$. If $|A| \geq \sqrt{p}$, then

$$
|f(A)+f(A)|+|g(A, A)| \gg \begin{cases}|A|(|A| / \sqrt{p})^{1 / 2}, & \text { if }|A| \leq p^{7 / 10} \\ |A|(p /|A|)^{1 / 3}, & \text { if }|A| \geq p^{7 / 10}\end{cases}
$$

Theorem

Let $f(x, y) \in \mathbb{F}_{p}[x, y]$ be a polynomial of degree d which is non-composite, and is not of the form $g(x)+h(y)$ or $g(x) h(y)$. Suppose $f(x, y)$ is monic in each variable. Then if $|A|=|B|=n$,

$$
|f(A, B)| \gg_{d} n^{1+c}, \quad \text { for } p^{7 / 8+\varepsilon} \leq n \leq p^{1-\varepsilon}
$$

Comsinatorial idea: clonina

Whenever there is a single copy of an object, there are several overlapping copies.

Comsinatorial idea: clonina

Whenever there is a single copy of an object, there are several overlapping copies.

Example:

Turán's theorem
There is a K_{t}
$\xrightarrow{\text { regularity }}$
\Longrightarrow

Erdős-Stone theorem
There is every t-chromatic graph

Comsinatorial idea: clonina

Whenever there is a single copy of an object, there are several overlapping copies.

Example:

Proof sketch (regularity-free):
Given graph G of density $\frac{1}{2}+\epsilon$. Turán gives many copies of K_{3} in G. Some of these copies must share a pair of vertices by the pigeonhole principle.

Combinatorial idea: cloning

Given a set A and a function f. If $B=f(A, A)$ is small, $|B| \sim|A|$,

$$
|f(A, A)| \sim|A| \Longrightarrow|A|^{2} \text { solutions to } f\left(a_{1}, a_{2}\right)=b
$$

Comsinatorial idea: clonina

Given a set A and a function f. If $B=f(A, A)$ is small, $|B| \sim|A|$,

$$
\begin{aligned}
|f(A, A)| \sim|A| & \Longrightarrow|A|^{2} \text { solutions to } f\left(a_{1}, a_{2}\right)=b \\
& \Longrightarrow|A|^{3} \text { solutions to } f\left(a_{1}, a_{2}\right)=f\left(a_{3}, a_{4}\right)
\end{aligned}
$$

Combinatorial idea: cloning

Given a set A and a function f. If $B=f(A, A)$ is small, $|B| \sim|A|$,

$$
\begin{aligned}
|f(A, A)| \sim|A| & \Longrightarrow|A|^{2} \text { solutions to } f\left(a_{1}, a_{2}\right)=b \\
& \Longrightarrow|A|^{3} \text { solutions to } f\left(a_{1}, a_{2}\right)=f\left(a_{3}, a_{4}\right) \\
& \Longrightarrow|A|^{3} \text { solutions to }\left\{\begin{array}{l}
f\left(a_{1}, a_{2}\right)=f\left(a_{3}, a_{4}\right), \\
f\left(a_{2}, a_{3}\right)=b
\end{array}\right.
\end{aligned}
$$

Comsinatorial idea: clonina

Given a set A and a function f. If $B=f(A, A)$ is small, $|B| \sim|A|$,

$$
\left.\begin{array}{rl}
|f(A, A)| \sim|A| & \Longrightarrow|A|^{2} \text { solutions to } f\left(a_{1}, a_{2}\right)=b \\
& \Longrightarrow|A|^{3} \text { solutions to } f\left(a_{1}, a_{2}\right)=f\left(a_{3}, a_{4}\right)
\end{array}\right] \begin{aligned}
& \Longrightarrow|A|^{3} \text { solutions to }\left\{\begin{array}{l}
f\left(a_{1}, a_{2}\right)=f\left(a_{3}, a_{4}\right), \\
f\left(a_{2}, a_{3}\right)=b
\end{array}\right. \\
& \\
&
\end{aligned} \begin{aligned}
& \Longrightarrow|A|^{4} \text { solutions to }\left\{\begin{array}{l}
f\left(a_{1}, a_{2}\right)=f\left(a_{3}, a_{4}\right), \\
f\left(a_{2}, a_{3}\right)=f\left(a_{5}, a_{6}\right)
\end{array}\right. \\
&
\end{aligned}
$$

Comsinatorial idea: clonina

Example:
If $f(x, y)=x+y$, then $f(A, A)=A+A$.

$$
\begin{aligned}
|A+A| \sim|A| & \Longrightarrow|A|^{2} \text { solutions to } a_{1}+a_{2}=b \\
& \Longrightarrow|A|^{3} \text { solutions to } a_{1}+a_{2}=a_{3}+a_{4} \\
& \Longrightarrow|A|^{3} \text { solutions to } a_{1}+a_{2}-a_{3}=a_{4}
\end{aligned}
$$

Comsinatorial idea: clonina

Example:

If $f(x, y)=x+y$, then $f(A, A)=A+A$.

$$
\begin{aligned}
|A+A| \sim|A| & \Longrightarrow|A|^{2} \text { solutions to } a_{1}+a_{2}=b \\
& \Longrightarrow|A|^{3} \text { solutions to } a_{1}+a_{2}=a_{3}+a_{4} \\
& \Longrightarrow|A|^{3} \text { solutions to } a_{1}+a_{2}-a_{3}=a_{4}
\end{aligned}
$$

Theorem (Balog-Szemerédi-Gowers, Sudakov-Szemerédi-Vu)

Suppose $|A| \sim|B|$ and $a_{1}+a_{2}+a_{3}=b$ has many solutions in $a_{1}, a_{2}, a_{3} \in A, b \in B$. Then there is large $A^{\prime} \subset A$ such that $\left|A^{\prime}+A^{\prime}+A^{\prime}\right| \sim|A|$.

Comsinatorial idea: clonina

Example:

If $f(x, y)=x+y$, then $f(A, A)=A+A$.

$$
\begin{aligned}
|A+A| \sim|A| & \Longrightarrow|A|^{2} \text { solutions to } a_{1}+a_{2}=b \\
& \Longrightarrow|A|^{3} \text { solutions to } a_{1}+a_{2}=a_{3}+a_{4} \\
& \Longrightarrow|A|^{3} \text { solutions to } a_{1}+a_{2}-a_{3}=a_{4} \\
& \xlongequal[\text { approx. }]{\Longrightarrow}|A+A-A| \sim|A|
\end{aligned}
$$

Theorem (Balog-Szemerédi-Gowers, Sudakov-Szemerédi-Vu)

Suppose $|A| \sim|B|$ and $a_{1}+a_{2}+a_{3}=b$ has many solutions in $a_{1}, a_{2}, a_{3} \in A, b \in B$. Then there is large $A^{\prime} \subset A$ such that $\left|A^{\prime}+A^{\prime}+A^{\prime}\right| \sim|A|$.

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.

Induction step, $d \geq 3$:
■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$ - There is a t with many solutions to $a_{1}-a_{3}=t$

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.
Induction step, $d \geq 3$:
■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$
■ There is a t with many solutions to $a_{1}-a_{3}=t$

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.
Induction step, $d \geq 3$:
■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$
■ There is a t with many solutions to $a_{1}-a_{3}=t$

- $A^{\prime}=\{a \in A: a+t \in A\}$ has about $|A|$ elements

$$
g\left(A^{\prime}\right)+g\left(A^{\prime}\right) \subset f(A)-f(A)+f(A)-f(A)
$$

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.
Induction step, $d \geq 3$:
■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$
■ There is a t with many solutions to $a_{1}-a_{3}=t$
■ $A^{\prime}=\{a \in A: a+t \in A\}$ has about $|A|$ elements
■ Let $g(x)=f(x+t)-f(x)$.

$$
g\left(A^{\prime}\right)+g\left(A^{\prime}\right) \subset f(A)-f(A)+f(A)-f(A)
$$

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.
Induction step, $d \geq 3$:
■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$

- There is a t with many solutions to $a_{1}-a_{3}=t$

■ $A^{\prime}=\{a \in A: a+t \in A\}$ has about $|A|$ elements
■ Let $g(x)=f(x+t)-f(x)$.

$$
g\left(A^{\prime}\right)+g\left(A^{\prime}\right) \subset f(A)-f(A)+f(A)-f(A)
$$

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.
Induction step, $d \geq 3$:
■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$

- There is a t with many solutions to $a_{1}-a_{3}=t$

■ $A^{\prime}=\{a \in A: a+t \in A\}$ has about $|A|$ elements

- Let $g(x)=f(x+t)-f(x)$. $g\left(A^{\prime}\right)+g\left(A^{\prime}\right) \subset f(A)-f(A)+f(A)-f(A)$
- $|f(A)+f(A)| \sim|A| \Longrightarrow|f(A)-f(A)+f(A)-f(A)| \sim|A|$

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.
Induction step, $d \geq 3$:
■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$

- There is a t with many solutions to $a_{1}-a_{3}=t$

■ $A^{\prime}=\{a \in A: a+t \in A\}$ has about $|A|$ elements
■ Let $g(x)=f(x+t)-f(x)$. $g\left(A^{\prime}\right)+g\left(A^{\prime}\right) \subset f(A)-f(A)+f(A)-f(A)$
■ $|f(A)+f(A)| \sim|A| \Longrightarrow|f(A)-f(A)+f(A)-f(A)| \sim|A|$
■ $\left|A^{\prime}+A^{\prime}\right| \leq|A+A| \sim|A|$. Done by induction applied to A^{\prime} and g.

Proof of $|A+A|+|f(A)+f(A)| \geq|A|^{1+c(d)}$.

Let $\operatorname{deg} f=d$. Induction on d. Proof by contradiction.
Base case $d=2$: similar to $d-1 \Longrightarrow d$, but slightly harder. Induction step, $d \geq 3$:

■ $|A+A| \sim|A| \Longrightarrow$ many solutions to $a_{1}+a_{2}=a_{3}+a_{4}$
■ There is a t with many solutions to $a_{1}-a_{3}=t$
■ $A^{\prime}=\{a \in A: a+t \in A\}$ has about $|A|$ elements
■ Let $g(x)=f(x+t)-f(x)$. $g\left(A^{\prime}\right)+g\left(A^{\prime}\right) \subset f(A)-f(A)+f(A)-f(A)$
$\square|f(A)+f(A)| \sim|A| \Longrightarrow|f(A)-f(A)+f(A)-f(A)| \sim|A|$
$\square\left|A^{\prime}+A^{\prime}\right| \leq|A+A| \sim|A|$. Done by induction applied to A^{\prime} and g.

Combinatorial idea: pigeonhole

Suppose $|A A|$ and $f(A)+f(A)$ are small. Then what?
■ If $f(x)=x$, then $A A$ or $A+A$ is large by the sum-product.

- If $f(x)=x^{2}$, then $B=f(A)$ satisfies $|B B|=|A A|$. But $B B$ and $B+B$ are small.

Combinatorial idea: pigeonhole

Suppose $|A A|$ and $f(A)+f(A)$ are small. Then what?
■ If $f(x)=x$, then $A A$ or $A+A$ is large by the sum-product.

- If $f(x)=x^{2}$, then $B=f(A)$ satisfies $|B B|=|A A|$. But $B B$ and $B+B$ are small.
- If $f(x)=x+x^{2}$, then $f(A)-f(A)+f(A)-f(A)+\cdots$ is small
- There is a t and a large $A_{t} \subset A$ such that $t A_{t} \subset A$.

Combinatorial idea: pigeonhole

Suppose $|A A|$ and $f(A)+f(A)$ are small. Then what?
■ If $f(x)=x$, then $A A$ or $A+A$ is large by the sum-product.

- If $f(x)=x^{2}$, then $B=f(A)$ satisfies $|B B|=|A A|$. But $B B$ and $B+B$ are small.
- If $f(x)=x+x^{2}$, then $f(A)-f(A)+f(A)-f(A)+\cdots$ is small
- There is a t and a large $A_{t} \subset A$ such that $t A_{t} \subset A$.

Combinatorial idea: pigeonhole

Suppose $|A A|$ and $f(A)+f(A)$ are small. Then what?
■ If $f(x)=x$, then $A A$ or $A+A$ is large by the sum-product.

- If $f(x)=x^{2}$, then $B=f(A)$ satisfies $|B B|=|A A|$. But $B B$ and $B+B$ are small.
- If $f(x)=x+x^{2}$, then $f(A)-f(A)+f(A)-f(A)+\cdots$ is small
- There is a t and a large $A_{t} \subset A$ such that $t A_{t} \subset A$.

■ Hence $f\left(t_{1} A_{t_{1}}\right)-f\left(t_{2} A_{t_{2}}\right)+\cdots+f\left(t_{k} A_{t_{k}}\right)$ is small.

Combinatorial idea: pigeonhole

Suppose $|A A|$ and $f(A)+f(A)$ are small. Then what?
■ If $f(x)=x$, then $A A$ or $A+A$ is large by the sum-product.

- If $f(x)=x^{2}$, then $B=f(A)$ satisfies $|B B|=|A A|$. But $B B$ and $B+B$ are small.
■ If $f(x)=x+x^{2}$, then $f(A)-f(A)+f(A)-f(A)+\cdots$ is small
- There is a t and a large $A_{t} \subset A$ such that $t A_{t} \subset A$.

■ Hence $f\left(t_{1} A_{t_{1}}\right)-f\left(t_{2} A_{t_{2}}\right)+\cdots+f\left(t_{k} A_{t_{k}}\right)$ is small.
■ Imaging $A_{t_{1}}=\cdots=A_{t_{k}}=A^{\prime}$. For

$$
\begin{aligned}
& g(x)=\left(t_{1}^{2}-t_{2}^{2}+t_{3}^{2} \cdots\right) x^{2}+\left(t_{1}-t_{2}+t_{3} \cdots\right) x, \text { we have } \\
& g(A)+\cdots+g(A) \text { is small. }
\end{aligned}
$$

Combinatorial idea: pigeonhole

Suppose $|A A|$ and $f(A)+f(A)$ are small. Then what?

- If $f(x)=x$, then $A A$ or $A+A$ is large by the sum-product.
- If $f(x)=x^{2}$, then $B=f(A)$ satisfies $|B B|=|A A|$. But $B B$ and $B+B$ are small.
■ If $f(x)=x+x^{2}$, then $f(A)-f(A)+f(A)-f(A)+\cdots$ is small
- There is a t and a large $A_{t} \subset A$ such that $t A_{t} \subset A$.

■ Hence $f\left(t_{1} A_{t_{1}}\right)-f\left(t_{2} A_{t_{2}}\right)+\cdots+f\left(t_{k} A_{t_{k}}\right)$ is small.
■ Imaging $A_{t_{1}}=\cdots=A_{t_{k}}=A^{\prime}$. For $g(x)=\left(t_{1}^{2}-t_{2}^{2}+t_{3}^{2} \cdots\right) x^{2}+\left(t_{1}-t_{2}+t_{3} \cdots\right) x$, we have $g(A)+\cdots+g(A)$ is small.
■ If $t_{1}-t_{2}+t_{3} \cdots=0$, then done by the above.

- There are many t. By the pigeonhole there is a solution to

Combinatorial idea: pigeonhole

Suppose $|A A|$ and $f(A)+f(A)$ are small. Then what?
■ If $f(x)=x$, then $A A$ or $A+A$ is large by the sum-product.

- If $f(x)=x^{2}$, then $B=f(A)$ satisfies $|B B|=|A A|$. But $B B$ and $B+B$ are small.
■ If $f(x)=x+x^{2}$, then $f(A)-f(A)+f(A)-f(A)+\cdots$ is small
- There is a t and a large $A_{t} \subset A$ such that $t A_{t} \subset A$.

■ Hence $f\left(t_{1} A_{t_{1}}\right)-f\left(t_{2} A_{t_{2}}\right)+\cdots+f\left(t_{k} A_{t_{k}}\right)$ is small.
■ Imaging $A_{t_{1}}=\cdots=A_{t_{k}}=A^{\prime}$. For $g(x)=\left(t_{1}^{2}-t_{2}^{2}+t_{3}^{2} \cdots\right) x^{2}+\left(t_{1}-t_{2}+t_{3} \cdots\right) x$, we have $g(A)+\cdots+g(A)$ is small.

- If $t_{1}-t_{2}+t_{3} \cdots=0$, then done by the above.
- There are many t. By the pigeonhole there is a solution to $t_{1}+t_{3} \cdots=t_{2}+t_{4} \cdots$

The End

