Sum-product estimate for $|A+A|+|f(A)+B|$ for a quadratic polynomial f

Boris Bukh and Jacob Tsimerman

Theorem 1. Let $f \in \mathbb{F}_{p}[X]$ be a polynomial of degree 2. Then for all sets $A, B \subset \mathbb{F}_{p}$ satisfying $|A|,|B| \leq \sqrt{p}$, we have

$$
|A+A|+|f(A)+B| \gg|A||B|^{1 / 180}
$$

Lemma 2 (A variation on Gar08]). Suppose $A, B \subset \mathbb{F}_{p}$ and $G \subset A \times B$ is a bipartite graph with at least $\frac{1}{K}|A||B|$ edges. Then

$$
|A+A|+\left|A \cdot{ }_{G} B\right| \gg \frac{\min (|B|, p /|A|)^{1 / 25-o(1)}}{K}|A| .
$$

Corollary 3. Suppose sets $A, B \subset \mathbb{F}_{p}$ and a graph $G \subset A \times B$ satisfy $|A|,|B| \leq p^{(1+1 / 29) / 2}$ and $|G| \geq \frac{1}{K}|A||B|$. Then

$$
|A+A|+\left|A \cdot{ }_{G} B\right| \gg \frac{|B|^{1 / 29}}{K}|A| .
$$

Theorem 1 from Gar08 is a special case of Lemma 2 for $G=A \times B$. However, the proof from Gar08 carries almost verbatim to establish the stronger result. Below we outline the changes to that argument to the case when $G \neq A \times B$.

Proof sketch for Lemma 2. Let $\lambda \cdot A=\{\lambda a: a \in A\}$ denote the dilate of A by λ. For $b \in B$ put $A_{b}=\{a:(a, b) \in G\}$. Suppose $|A+A|+\left|A \cdot{ }_{G} B\right| \leq \Delta|A|$. Since $\sum_{b, b^{\prime} \in B}\left|b \cdot A_{b} \cap b^{\prime} \cdot A_{b^{\prime}}\right| \geq$ $|G|^{2} /\left|A \cdot{ }_{G} B\right| \geq|A||B|^{2} / \Delta K^{2}$, there is a fixed $b_{0} \in B$ for which $\sum_{b \in B}\left|b \cdot A_{b} \cap b_{0} \cdot A_{b_{0}}\right| \geq$ $|A||B| / \Delta K^{2}$. Define

$$
B_{1}=\left\{b \in B:\left|b \cdot A_{b} \cap b_{0} \cdot A_{b_{0}}\right| \geq \frac{|A|}{2 \Delta K^{2}}\right\} .
$$

For $b \in B_{1}$ from the Ruzsa triangle inequalities we deduce

$$
\begin{aligned}
\left|b \cdot A \pm b_{0} \cdot A\right| & \leq \frac{\left|b \cdot A+\left(b \cdot A_{b} \cap b_{0} \cdot A_{b_{0}}\right)\right|\left|\left(b \cdot A_{b} \cap b_{0} \cdot A_{b_{0}}\right)+b_{0} \cdot A\right|}{\left|b \cdot A_{b} \cap b_{0} \cdot A_{b_{0}}\right|} \\
& \leq \frac{|A+A|^{2}}{|A| / 2 \Delta K^{2}} \leq 2|A| \Delta^{3} K^{2} .
\end{aligned}
$$

For a given $a \in A$, let $B_{1}(a)=\left\{b:(a, b) \in G, b \in B_{1}, a b \in b_{0} \cdot A_{b_{0}}\right\}$. Then

$$
\sum_{a \in A}\left|B_{1}(a)\right|=\sum_{b \in B_{1}}\left|b \cdot A_{b} \cap b_{0} \cdot A_{b_{0}}\right| \geq \frac{|A||B|}{2 K^{2} \Delta} .
$$

Replacing the $0.5|X|^{2}|Y| /|X Y|$ by $|X|^{2}|Y| / K\left|X \cdot{ }_{G} Y\right|$ in Lemma 3 of Gar08], and carrying the rest of the proof as in Gar08, then after simple, but tedious calculations we obtain $\Delta \gg \min \left(|B|^{1 / 8-o(1)} / K,\left(|B| / K^{17}\right)^{1 / 25},\left(p / K^{16}|A|\right)^{1 / 25-o(1)}\right) \geq \min (|B|, p /|A|)^{1 / 25-o(1)} / K$.

Proof of Theorem 1. Since $|f(A)+B| \geq|B|$, it suffices to deal only with the case $|B| \leq$ $|A|^{2}$. Suppose $f(x)=\alpha x^{2}+\beta x+\gamma$ is a quadratic polynomial with $\alpha \neq 0$. Assume that $|A+A|+|f(A)+B| \leq \Delta|A|$. From the Cauchy-Schwarz inequality it follows that there are at least $(|A||B|)^{2} /|f(A)+B| \geq|A||B|^{2} \Delta^{-1}$ solutions to

$$
\alpha a_{1}^{2}+\beta a_{1}+\gamma+b_{1}=\alpha a_{2}^{2}+\beta a_{2}+\gamma+b_{2}, \quad a_{1}, a_{2} \in A, b_{1}, b_{2} \in B
$$

Since $a_{1}^{2}-a_{2}^{2}=\left(a_{1}-a_{2}\right)\left(a_{1}+a_{2}\right)$ after rearranging the terms we conclude that there are at least $\Delta^{-1}|A||B|^{2}$ solutions to

$$
\begin{equation*}
s \cdot \frac{1}{b_{2}-b_{1}}=d, \quad s \in \alpha \cdot(A+A)+\beta, d \in(A-A)^{-1}, b_{1}, b_{2} \in B . \tag{1}
\end{equation*}
$$

For $\left(b_{1}, b_{2}\right) \in B \times B$ we let $r\left(b_{1}, b_{2}\right)$ be the number ways to extend it to a solution of (1). Let $G=\left\{\left(b_{1}, b_{2}\right) \in B \times B: r\left(b_{1}, b_{2}\right) \geq \frac{1}{2} \Delta^{-1}|A|\right\}$. Since the number of solutions to (1) with $\left(b_{1}, b_{2}\right) \notin G$ is at most $|B|^{2} \cdot \frac{1}{2} \Delta^{-1}|A|$, the number of solutions to the equation subject to $\left(b_{1}, b_{2}\right) \in G$ is at least $\frac{1}{2} \Delta^{-1}|A||B|^{2}$. Since we always have $r\left(b_{1}, b_{2}\right) \leq|A+A| \leq \Delta|A|$, it follows that $|G| \geq \frac{1}{2}|B|^{2} \Delta^{-2}$. For $c \in B-B$ let $R(c)$ be the number of solutions to $c=b_{2}-b_{1}$ with $\left(b_{1}, b_{2}\right) \in G$. Let $G_{i}=\left\{\left(b_{1}, b_{2}\right) \in G: 2^{i-1} \leq R\left(b_{2}-b_{1}\right) \leq 2^{i}\right\}$. Each $\left(b_{1}, b_{2}\right) \in G$ belongs to one of $G_{1}, \ldots, G_{\log |B|}$. Pick an i so that $\left|G_{i}\right| \geq|G| / \log |B|$. Let $C=\left\{\frac{1}{b_{2}-b_{1}}:\left(b_{1}, b_{2}\right) \in G_{i}\right\}$. Note that $2^{-i}\left|G_{i}\right| \leq|C| \leq 2^{1-i}\left|G_{i}\right|$. Each solution to

$$
\begin{equation*}
s c=d, \quad s \in \alpha \cdot(A+A)+\beta, d \in(A-A)^{-1}, c \in C \tag{2}
\end{equation*}
$$

gives rise to $R(c) \leq 2^{i}$ solutions to (11). Thus the number of solutions to (2) is at least

$$
2^{-i}\left(\left|G_{i}\right| \cdot \frac{1}{2} \Delta^{-1}|A|\right) \geq\left(\frac{1}{2}|C|\right) \cdot \frac{1}{2} \Delta^{-1}|A|=\frac{1}{4} \Delta^{-1}|A||C| \geq \frac{1}{4} \Delta^{-2}|A+A||C|
$$

By Plünnecke's inequality $|(A+A)+(A+A)| \leq \Delta^{4}|A|$ and by the triangle inequality $|A-A| \leq \Delta^{2}|A|$. If $|C| \geq p^{(1+1 / 29) / 2}$, then $|C| \leq|A-A| \leq \Delta^{2}|A|$ implies that $\Delta \geq$ $|A|^{1 / 58} \geq|B|^{1 / 116}$. Thus $|C| \leq p^{(1+1 / 29) / 2}$ with a similar bound for $|A+A|$.

Let $H=\left\{(s, c) \in(\alpha \cdot(A+A)+\beta) \times C: s c \in(A-A)^{-1}\right\}$. Corollary 3 with $K=4 \Delta^{2}$ applied to

$$
|(\alpha \cdot(A+A)+\beta)+(\alpha \cdot(A+A)+\beta)|+\left|(\alpha \cdot(A+A)+\beta) \cdot{ }_{H} C\right|
$$

yields $|C|^{1 / 29} / \Delta^{2} \leq \Delta^{4}$. Therefore

$$
\Delta^{174} \geq|C| \geq \frac{\left|G_{i}\right|}{|B|} \geq \frac{|G|}{|B| \log |B|} \geq \frac{|B|}{2 \Delta^{2} \log |B|}
$$

implying $\Delta \geq|B|^{1 / 176-o(1)}$.

References

[Gar08] M. Z. Garaev. A quantified version of Bourgain's sum-product estimate in \mathbb{F}_{p} for subsets of incomparable sizes. Electron. J. Combin., 15(1):Research paper 58, 8, 2008.

