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Theorem 1. Let f ∈ Fp[X] be a polynomial of degree 2. Then for all sets A,B ⊂ Fp

satisfying |A|, |B| ≤ √
p, we have

|A + A|+ |f(A) + B| � |A||B|1/180.

Lemma 2 (A variation on [Gar08]). Suppose A,B ⊂ Fp and G ⊂ A × B is a bipartite
graph with at least 1

K |A||B| edges. Then

|A + A|+ |A ·G B| � min(|B|, p/|A|)1/25−o(1)

K
|A|.

Corollary 3. Suppose sets A,B ⊂ Fp and a graph G ⊂ A×B satisfy |A|, |B| ≤ p(1+1/29)/2

and |G| ≥ 1
K |A||B|. Then

|A + A|+ |A ·G B| � |B|1/29

K
|A|.

Theorem 1 from [Gar08] is a special case of Lemma 2 for G = A × B. However, the
proof from [Gar08] carries almost verbatim to establish the stronger result. Below we
outline the changes to that argument to the case when G 6= A×B.

Proof sketch for Lemma 2. Let λ·A = {λa : a ∈ A} denote the dilate of A by λ. For b ∈ B

put Ab = {a : (a, b) ∈ G}. Suppose |A+A|+|A·GB| ≤ ∆|A|. Since
∑

b,b′∈B|b·Ab∩b′ ·Ab′ | ≥
|G|2/|A ·G B| ≥ |A||B|2/∆K2, there is a fixed b0 ∈ B for which

∑
b∈B|b · Ab ∩ b0 · Ab0 | ≥

|A||B|/∆K2. Define

B1 = {b ∈ B : |b ·Ab ∩ b0 ·Ab0 | ≥
|A|

2∆K2
}.

For b ∈ B1 from the Ruzsa triangle inequalities we deduce

|b ·A± b0 ·A| ≤
|b ·A + (b ·Ab ∩ b0 ·Ab0)||(b ·Ab ∩ b0 ·Ab0) + b0 ·A|

|b ·Ab ∩ b0 ·Ab0 |

≤ |A + A|2

|A|/2∆K2
≤ 2|A|∆3K2.
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For a given a ∈ A, let B1(a) = {b : (a, b) ∈ G, b ∈ B1, ab ∈ b0 ·Ab0}. Then∑
a∈A

|B1(a)| =
∑
b∈B1

|b ·Ab ∩ b0 ·Ab0 | ≥
|A||B|
2K2∆

.

Replacing the 0.5|X|2|Y |/|XY | by |X|2|Y |/K|X ·GY | in Lemma 3 of [Gar08], and carrying
the rest of the proof as in [Gar08], then after simple, but tedious calculations we obtain

∆ � min(|B|1/8−o(1)/K, (|B|/K17)1/25, (p/K16|A|)1/25−o(1)) ≥ min(|B|, p/|A|)1/25−o(1)/K.

Proof of Theorem 1. Since |f(A) + B| ≥ |B|, it suffices to deal only with the case |B| ≤
|A|2. Suppose f(x) = αx2 + βx + γ is a quadratic polynomial with α 6= 0. Assume that
|A + A|+ |f(A) + B| ≤ ∆|A|. From the Cauchy–Schwarz inequality it follows that there
are at least (|A||B|)2/|f(A) + B| ≥ |A||B|2∆−1 solutions to

αa2
1 + βa1 + γ + b1 = αa2

2 + βa2 + γ + b2, a1, a2 ∈ A, b1, b2 ∈ B.

Since a2
1 − a2

2 = (a1 − a2)(a1 + a2) after rearranging the terms we conclude that there are
at least ∆−1|A||B|2 solutions to

s · 1
b2 − b1

= d, s ∈ α · (A + A) + β, d ∈ (A−A)−1, b1, b2 ∈ B. (1)

For (b1, b2) ∈ B ×B we let r(b1, b2) be the number ways to extend it to a solution of (1).
Let G = {(b1, b2) ∈ B × B : r(b1, b2) ≥ 1

2∆−1|A|}. Since the number of solutions to (1)
with (b1, b2) 6∈ G is at most |B|2 · 12∆−1|A|, the number of solutions to the equation subject
to (b1, b2) ∈ G is at least 1

2∆−1|A||B|2. Since we always have r(b1, b2) ≤ |A + A| ≤ ∆|A|,
it follows that |G| ≥ 1

2 |B|
2∆−2. For c ∈ B − B let R(c) be the number of solutions to

c = b2 − b1 with (b1, b2) ∈ G. Let Gi = {(b1, b2) ∈ G : 2i−1 ≤ R(b2 − b1) ≤ 2i}. Each
(b1, b2) ∈ G belongs to one of G1, . . . , Glog|B|. Pick an i so that |Gi| ≥ |G|/ log|B|. Let
C = { 1

b2−b1
: (b1, b2) ∈ Gi}. Note that 2−i|Gi| ≤ |C| ≤ 21−i|Gi|. Each solution to

sc = d, s ∈ α · (A + A) + β, d ∈ (A−A)−1, c ∈ C (2)

gives rise to R(c) ≤ 2i solutions to (1). Thus the number of solutions to (2) is at least

2−i
(
|Gi| · 1

2∆−1|A|
)
≥ (1

2 |C|) ·
1
2∆−1|A| = 1

4∆−1|A||C| ≥ 1
4∆−2|A + A||C|

By Plünnecke’s inequality |(A + A) + (A + A)| ≤ ∆4|A| and by the triangle inequality
|A − A| ≤ ∆2|A|. If |C| ≥ p(1+1/29)/2, then |C| ≤ |A − A| ≤ ∆2|A| implies that ∆ ≥
|A|1/58 ≥ |B|1/116. Thus |C| ≤ p(1+1/29)/2 with a similar bound for |A + A|.

Let H = {(s, c) ∈ (α · (A + A) + β)×C : sc ∈ (A−A)−1}. Corollary 3 with K = 4∆2

applied to

|(α · (A + A) + β) + (α · (A + A) + β)|+ |(α · (A + A) + β) ·H C|
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yields |C|1/29/∆2 ≤ ∆4. Therefore

∆174 ≥ |C| ≥ |Gi|
|B|

≥ |G|
|B| log|B|

≥ |B|
2∆2 log|B|

,

implying ∆ ≥ |B|1/176−o(1).
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