Random algebraic constructions

Boris Bukh

26 March 2022

Based on joint works with Pavle Blagojević, David Conlon, Zilin Jiang, Roman Karasev, Michael Tait and on prior works of many others

Random constructions of combinatorial objects

Specific technique to correlate good events

Motivational problem: Turán numbers

Forbidden subgraph F. How to make large F-free graph?

$$\operatorname{ex}(n,F) = \max_{\substack{G \text{ is } F - \operatorname{free} \\ n \text{ vertices}}} e(G)$$

Erdős–Stone'46

$$ex(n,F) = \left(1 - \frac{1}{\chi(F) - 1} + o(1)\right) \binom{n}{2}$$

Motivational problem: Turán numbers

Forbidden subgraph F. How to make large F-free graph?

$$ex(n,F) = \max_{\substack{G \text{ is } F-\text{free} \\ n \text{ vertices}}} e(G)$$

Erdős–Stone'46

$$ex(n,F) = \left(1 - \frac{1}{\chi(F) - 1} + o(1)\right) \binom{n}{2}$$

Theorem (Kovari–Sós–Turán)

The maximum number of edges in a $K_{s,t}$ -free graph is $ex(n, K_{s,t}) \le c_{s,t}n^{2-1/s}$

"Proof":

- Pretend that the K_{s,t}-free graph is regular. Let d be the degree of each vertex.
- 2 Count *s*-stars

Theorem (Kovari–Sós–Turán)

The maximum number of edges in a $K_{s,t}$ -free graph is $ex(n, K_{s,t}) \le c_{s,t}n^{2-1/s}$

"Proof":

- Pretend that the K_{s,t}-free graph is regular. Let d be the degree of each vertex.
- 2 Count *s*-stars

Exactly $n\binom{d}{c}$ copies

Theorem (Kovari–Sós–Turán)

The maximum number of edges in a $K_{s,t}$ -free graph is $ex(n, K_{s,t}) \le c_{s,t} n^{2-1/s}$

"Proof":

- Pretend that the K_{s,t}-free graph is regular. Let d be the degree of each vertex.
- 2 Count *s*-stars

Exactly $n\binom{d}{s}$ copies At most $(t-1)\binom{n}{s}$ copies

Theorem (Kovari–Sós–Turán)

The maximum number of edges in a $K_{s,t}$ -free graph is $ex(n, K_{s,t}) \le c_{s,t} n^{2-1/s}$

"Proof":

- Pretend that the K_{s,t}-free graph is regular. Let d be the degree of each vertex.
- 2 Count *s*-stars

In a real proof, replace **1** by Jensen's inequality.

Upper bound:

$$\exp(n, K_{s,t}) \le c_{s,t} n^{2-1/s}$$

Lower bound ideas:

Upper bound:

$$\exp(n, K_{s,t}) \leq c_{s,t} n^{2-1/s}$$

Lower bound ideas:

Upper bound:

$$\exp(n, K_{s,t}) \leq c_{s,t} n^{2-1/s}$$

Lower bound ideas:

Random graph with
$$n^{2-1/s}$$
 edges:

Construction:

- Bipartite graph on n + n vertices
- Edge probability is $p = n^{-1/s}$

Random graph with
$$n^{2-1/s}$$
 edges:

Construction:

- Bipartite graph on n + n vertices
- Edge probability is $p = n^{-1/s}$

Analysis:

- Fix any s vertices on the left
- *N* are their common neighbors
- $\Pr[y \in N] = p^s = 1/n$
- $\mathbb{E}[|N|] = 1$. Good news!

Random graph with
$$n^{2-1/s}$$
 edges:

Construction:

- Bipartite graph on n + n vertices
- Edge probability is $p = n^{-1/s}$

Analysis:

- Fix any s vertices on the left
- *N* are their common neighbors
- $\Pr[y \in N] = p^s = 1/n$
- $\mathbb{E}[|N|] = 1$. Good news!
- There are $\binom{n}{s} \approx n^s$ sets.
- For each, $N \sim$ Poisson. Bad news!

Random graph with $n^{2-1/s}$ edges:

Construction:

- Bipartite graph on n + n vertices
- Edge probability is $p = n^{-1/s}$

Analysis:

- Fix any s vertices on the left
- *N* are their common neighbors
- $\Pr[y \in N] = p^s = 1/n$
- $\mathbb{E}[|N|] = 1$. Good news!
- There are $\binom{n}{s} \approx n^s$ sets.
- For each, $N \sim$ Poisson. Bad news!

Motivation: Being clever

The maximum number of edges in a $K_{2,2}$ -free graph is

$$ex(n, K_{2,2}) = \Theta(n^{3/2}).$$

Connect $x = (x_1, x_2)$ with $y = (y_1, y_2)$ if $x_1y_1 + x_2y_2 = 1$.

 $2q^2$ vertices degree q

Motivation: Being clever

The maximum number of edges in a $K_{3,3}$ -free graph is

$$\exp(n, K_{3,3}) = \Theta(n^{2-1/3})$$

Connect $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ if $(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2 = 1$.

 $2q^3$ vertices degree $\approx q^2$

Motivation: Being clever

The maximum number of edges in a $K_{3,3}$ -free graph is

$$\exp(n, K_{3,3}) = \Theta(n^{2-1/3}).$$

Connect
$$x = (x_1, x_2, x_3)$$
 and $y = (y_1, y_2, y_3)$ if $(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2 = 1$.
No similar
 $k_{4,4}$ -free graph
No similar
 $K_{4,4}$ -free graph
No similar
 $k_{4,4}$ -free graph
 $k_{5,t}$ -free graph
with $t > (s - 1)!$

Try luck: random algebraic construction

Connect $x = (x_1, ..., x_s)$ and $y = (y_1, ..., y_s)$ if f(x, y) = 0. Choose f randomly among all polynomials of degree d.

Good news 1: Behaves randomly on small scale.

Good news 2: Very correlated on large scale.

Small-scale independence

 $x \sim y$ if f(x, y) = 0Random f of deg d

Claim

For any $x_1, \ldots, x_a \in \mathbb{F}_q^s$ and $y_1, \ldots, y_b \in \mathbb{F}_q^s$, the edges $(x_i y_j : i, j)$ are independent, if $d \ge d_0(a, b)$.

Intuition:

- Every function is a polynomial of degree q 1.
- Claim holds for a random function

Small-scale independence

 $x \sim y$ if f(x, y) = 0Random f of deg d

Claim

For any $x_1, \ldots, x_a \in \mathbb{F}_q^s$ and $y_1, \ldots, y_b \in \mathbb{F}_q^s$, the edges $(x_i y_j : i, j)$ are independent, if $d \ge d_0(a, b)$.

Key proof steps:

- Unique degree-d polynomial through d + 1 pts
- Generic rotation of the coordinates

Common neighborhood of $A = \{x_1, \dots, x_s\}$ is $N(A) = \{y \in \mathbb{F}_q^s : f(x_1, y) = \dots = f(x_s, y) = 0\}$

Analogies:

Linear equations

Polynomial equations

Common neighborhood of $A = \{x_1, \dots, x_s\}$ is $N(A) = \{y \in \mathbb{F}_q^s : f(x_1, y) = \dots = f(x_s, y) = 0\}$

Analogies:

Linear equations Subspace Polynomial equations Variety

Common neighborhood of
$$A = \{x_1, \dots, x_s\}$$
 is
 $N(A) = \{y \in \mathbb{F}_q^s : f(x_1, y) = \dots = f(x_s, y) = 0\}$

Analogies:

Linear equations Subspace Dimension *d* Polynomial equations Variety "Dimension" *d*

Common neighborhood of
$$A = \{x_1, \dots, x_s\}$$
 is
 $N(A) = \{y \in \mathbb{F}_q^s : f(x_1, y) = \dots = f(x_s, y) = 0\}$

Analogies:

Linear equations Subspace Dimension *d q^d* points Polynomial equations Variety "Dimension" d $\Theta(q^d)$ points

Neighborhood size: punchline

$$\begin{aligned} \Pr[\exists K_{s,t} \text{ subgraph}] &= \Pr[\exists A \text{ s.t. } |N(A)| \geq t] \\ &= \Pr[\exists A \text{ s.t. } |N(A)| \geq \Theta(q)] \\ &= \text{tiny} \end{aligned}$$

"Dimension" is 1

Dimension is well-behaved over $\overline{\mathbb{F}_q}$ (algebraically closed)

For variety V, irreducible decomposition $V = V_1 \cup \cdots \cup V_k$.

Examples:

1 {
$$x^2 - y^2 = 0$$
} is { $x - y = 0$ } \cup { $x + y = 0$ }
2 { $x^2 + y^2 = 0$ } is { $x + iy = 0$ } \cup { $x - iy = 0$ }

Theorem (Lang–Weil)

If variety V is irreducible over $\overline{\mathbb{F}}_q$, then the number of points V over \mathbb{F}_q is $q^{\dim V}(1+o(1))$.

Problem:

```
What if V is irreducible over \mathbb{F}_q but not over \overline{\mathbb{F}_q}?
```

Problem

What if V is irreducible over \mathbb{F}_q but not over $\overline{\mathbb{F}_q}$?

Irreducible decomposition

$$V = V_1 \cup \cdots \cup V_k$$

Map Frob: $x \mapsto x^q$ generates $Gal(F/\mathbb{F}_q)$ for every extension F/\mathbb{F}_q .

Problem

What if V is irreducible over \mathbb{F}_q but not over $\overline{\mathbb{F}_q}$?

Irreducible decomposition

$$V = V_1 \cup \cdots \cup V_k$$

Map Frob: $x \mapsto x^q$ generates $Gal(F/\mathbb{F}_q)$ for every extension F/\mathbb{F}_q .

Corollary

Frob permutes V₁,..., V_k, and does so transitively
 V(F_q) = V_i(F_q)

Proof:

- 1 If $V_1, ..., V_t$ is an orbit, then $V_1 \cup \cdots \cup V_t$ is an \mathbb{F}_q -component
- **2** The Frobenius map does not move \mathbb{F}_{q} -points

Problem

What if V is irreducible over \mathbb{F}_q but not over $\overline{\mathbb{F}_q}$?

Irreducible decomposition

$$V = V_1 \cup \cdots \cup V_k$$

Map Frob: $x \mapsto x^q$ generates $Gal(F/\mathbb{F}_q)$ for every extension F/\mathbb{F}_q .

Corollary

It follows that

$$V(\mathbb{F}_q) = V_1(\mathbb{F}_1) \cap \dots \cap V_k(\mathbb{F}_q)$$

Technicalities and an embellishment

The iteration:

- **1** Break the variety into \mathbb{F}_q -components
- 2 Break each \mathbb{F}_q -component V into $\overline{\mathbb{F}_q}$ -components V_1, \ldots, V_k
- 3 Replace V by $V_1 \cap \cdots \cap V_k$
- 4 Repeat

Key technical problem

Must control the number of components

Technicalities and an embellishment

The iteration:

- **1** Break the variety into \mathbb{F}_q -components
- 2 Break each \mathbb{F}_q -component V into $\overline{\mathbb{F}_q}$ -components V_1, \ldots, V_k
- 3 Replace V by $V_1 \cap \cdots \cap V_k$
- 4 Repeat

Key technical problem

Must control the number of components

Solution 1

- Number of components is $\leq \deg V$
- deg(U ∩ V) ≤ (deg V)(deg U) (Bezout's inequality)

Technicalities and an embellishment

The iteration:

- **1** Break the variety into \mathbb{F}_q -components
- 2 Break each \mathbb{F}_q -component V into $\overline{\mathbb{F}_q}$ -components V_1, \ldots, V_k
- 3 Replace V by $V_1 \cap \cdots \cap V_k$
- 4 Repeat

Key technical problem

Must control the number of components

Solution 1

- Number of components is $\leq \deg V$
- deg(U ∩ V) ≤ (deg V)(deg U) (Bezout's inequality)

Solution 2

Get rid of probability Do dimension-counting

Back to neighborhood size

Probabilistic argument

Goal

An upper bound on $\Pr[|N(A)| \ge T]$, for $T = \Theta(q)$

Known facts:

- If edges were independent, $N(A) \approx \text{Poisson}(1)$.
- Edges are k-wise independent, for large k.

Probabilistic argument

Goal

An upper bound on
$$Pr[|N(A)| \ge T]$$
, for $T = \Theta(q)$

Known facts:

- If edges were independent, $N(A) \approx \text{Poisson}(1)$.
- Edges are k-wise independent, for large k.
- **1** ℓ 'th moment of N(A)

$$\mathbb{E}\big[N(A)^\ell\big] = \sum_{\mathbf{v}_1,\ldots,\mathbf{v}_\ell} \mathbb{E}\big[\mathbf{1}_{\mathbf{v}_1 \in N(A)} \cdot \ldots \cdot \mathbf{1}_{\mathbf{v}_\ell \mid l \in N(A)}\big]$$

is the same as that of Poisson(1)

2 By Markov's inequality

$$\Pr[N(A) \ge T] = \Pr[N(A)^{\ell} \ge T^{\ell}] \le \frac{\mathbb{E}[N(A)^{\ell}]}{T^{\ell}} = \frac{O(1)}{T^{\ell}}$$

Dimension-counting argument

Goal

An upper bound on
$$\Pr[|N(A)| \ge T]$$
, for $T = \Theta(q)$

Key points:

$$\begin{array}{ll} & \Pr[|N(A)| \geq \Omega(q)] = \Pr[\ \text{``dimension'' of } N(A) \geq 1] \\ & \leq \Pr[\ \text{dimension of } N(A) \geq 1] \end{array}$$

Dimension-d variety behaves similarly to a set of size q^d.
 Example (pigeonhole principle):

$$V_x = \{y : (x, y) \in V\}$$
$$U = \{x : \dim V_x \ge d\}$$

then

$$\dim U \leq \dim V - d$$

Dimension-counting argument

Goal

An upper bound on
$$\Pr[|N(A)| \ge T]$$
, for $T = \Theta(q)$

Key points:

$$\Pr[|N(A)| \ge \Omega(q)] = \Pr["dimension" of N(A) \ge 1] \\ \le \Pr[dimension of N(A) \ge 1]$$

Dimension-d variety behaves similarly to a set of size q^d.
 Example (pigeonhole principle):

$$V_x = \{y : (x, y) \in V\}$$
$$U = \{x : \dim V_x \ge d\}$$

then

$$\dim U \leq \dim V - a$$

\mathbb{F}_q^s looks like...

Theorem (B.)

The exist $K_{s,t}$ -free graphs with $c_s n^{2-1/s}$ edges and $t \leq C^s$.

Complete bipartite graphs:

 $\exp(n, K_{s,t}) \sim n^{2-1/t}$ if $s \gg t$

Cycles:

 $\operatorname{ex}(n, C_{2\ell}) \leq c_\ell n^{1+1/\ell}$ sharp for $\ell=2,3,5$

Complete bipartite graphs: $p_{k}(p_{k}(x)) = p^{2-1/t}$ if $q \ge 1$

 $ex(n, K_{s,t}) \sim n^{2-1/t}$ if $s \gg t$

Cycles:

 $\exp(n, C_{2\ell}) \leq c_\ell n^{1+1/\ell}$ sharp for $\ell=2,3,5$

"Proof":

1 Pretend that the C_{2t} -free graph is *d*-regular.

2 Pretend that the graph is in fact $\{C_3, C_4, \ldots, C_{2\ell}\}$ -free

Complete bipartite graphs: (2 - 1/t) = 2 - 1/t

 $ex(n, K_{s,t}) \sim n^{2-1/t}$ if $s \gg t$

Cycles:

 $\exp(n, C_{2\ell}) \leq c_\ell n^{1+1/\ell}$ sharp for $\ell=2,3,5$

"Proof":

1 Pretend that the C_{2t} -free graph is *d*-regular.

2 Pretend that the graph is in fact $\{C_3, C_4, \ldots, C_{2\ell}\}$ -free

Complete bipartite graphs: 2-1/t if

 $\exp(n, K_{s,t}) \sim n^{2-1/t}$ if $s \gg t$

Cycles:

 $\exp(n, C_{2\ell}) \leq c_\ell n^{1+1/\ell}$ sharp for $\ell=2,3,5$

"Proof":

1 Pretend that the C_{2t} -free graph is *d*-regular.

2 Pretend that the graph is in fact $\{C_3, C_4, \ldots, C_{2\ell}\}$ -free

Theta graph $\Theta_{4,2} = C_8$

Upper bound (Faudree–Simonovits): $ex(n, \Theta_{\ell,t}) \leq c_{\ell,t} n^{1+1/\ell}$

 $\begin{array}{ll} \text{Lower bound (Conlon):}\\ \exp(n,\Theta_{\ell,t})\geq \frac{1}{2}n^{1+1/\ell} & \text{ for } t\geq t(\ell) \end{array}$

Conlon's construction

Edges:

$$x \sim y$$
 if
 $f_1(x, y) = \cdots = f_{\ell-1}(x, y) = 0$
Random f_1, \ldots, f_ℓ

Average degree is $nq^{-(\ell-1)} = q$

Conlon's construction

Edges:

$$x \sim y$$
 if
 $f_1(x, y) = \cdots = f_{\ell-1}(x, y) = 0$
Random f_1, \ldots, f_{ℓ}

Average degree is $nq^{-(\ell-1)} = q$

Path counting:

Path $x_1y_1x_2y_2\cdots$ is a solution to $f(x_1, y_1) = f(x_2, y_2) = \cdots = 0$ s.t. $x_i \neq x_j \& y_i \neq y_j$

Conlon's construction

$$x \sim y$$
 if
 $f_1(x, y) = \cdots = f_{\ell-1}(x, y) = 0$
Random f_1, \ldots, f_{ℓ}

Average degree is $nq^{-(\ell-1)} = q$

Path counting:

Path
$$x_1y_1x_2y_2\cdots$$
 is a solution to $f(x_1, y_1) = f(x_2, y_2) = \cdots = 0$
s.t. $x_i \neq x_j \& y_i \neq y_j$

Key point: If U, V are varieties, then $U \setminus V$ has "dimension"

Upper bound (B.-Tait):

For any ℓ , we have $\exp(n, \Theta_{\ell,t}) \leq c_\ell t^{1-1/\ell} \cdot n^{1+1/\ell}$

Lower bound (B.-Tait):

For odd ℓ , we have $\exp(n, \Theta_{\ell,t}) \geq c_\ell' t^{1-1/\ell} \cdot n^{1+1/\ell}$

Upper bound (B.-Tait):

For any ℓ , we have $\exp(n, \Theta_{\ell,t}) \leq c_\ell t^{1-1/\ell} \cdot n^{1+1/\ell}$

Lower bound (B.-Tait):

For odd ℓ , we have $\exp(n, \Theta_{\ell,t}) \geq c_\ell' t^{1-1/\ell} \cdot n^{1+1/\ell}$

Upper bound (B.-Tait):

For any ℓ , we have $\mathsf{ex}(n, \Theta_{\ell, t}) \leq c_\ell t^{1-1/\ell} \cdot n^{1+1/\ell}$

Lower bound (B.-Tait):

For odd ℓ , we have $\mathrm{ex}(n, \Theta_{\ell,t}) \geq c_\ell' t^{1-1/\ell} \cdot n^{1+1/\ell}$

Blowing up Conlon:

Upper bound (B.-Tait):

For any ℓ , we have $\mathsf{ex}(n, \Theta_{\ell, t}) \leq c_\ell t^{1-1/\ell} \cdot n^{1+1/\ell}$

Lower bound (B.-Tait):

For odd ℓ , we have $\mathrm{ex}(n, \Theta_{\ell,t}) \geq c_\ell' t^{1-1/\ell} \cdot n^{1+1/\ell}$

Blowing up Conlon:

Consider $\Theta_{\ell,T}$: Endpoints x, y

Upper bound (B.-Tait):

For any ℓ , we have $\exp(n, \Theta_{\ell,t}) \leq c_\ell t^{1-1/\ell} \cdot n^{1+1/\ell}$

Lower bound (B.-Tait):

For odd ℓ , we have $\mathrm{ex}(n, \Theta_{\ell,t}) \geq c_\ell' t^{1-1/\ell} \cdot n^{1+1/\ell}$

Blowing up Conlon:

Consider $\Theta_{\ell,T}$: Endpoints x, y

Key observation:

x, y are in different blobs because ℓ is odd

Conclusion:

 $\Theta_{\ell, \mathcal{T}/c}$ in original

Turán exponents

Clonining the path thrice in two waysx:

Turán exponents

Clonining the path thrice in two waysx:

Generally:

T is a rooted tree (with several roots) T^p consists of all *p*-fold clones of T

Theorem (B.-Conlon)

For every rational number $r \in [1, 2]$, there is a T such that

 $ex(n, \mathcal{T}^p) = \Theta(n^r)$

for all $p \ge p_0$.

References

Upper bounds for cycles and thetas:

Kovari–Sós–Turán, Bondy–Simonovits, Faudree–Simonovits, Verstraëte, Pikhurko, B.–Jiang, B.–Tait

$K_{s,t}$ -free constructions:

Erdős–Rényi–Sós, Brown, Füredi, Kollár–Rónyai–Szabó, Alon–Rónyai–Szabó, B.–Blagojević–Karasev, Ball–Pepe, B.

Theta-free constructions:

Brown, Benson, Wenger, Füredi, Lazebnik–Ustimenko–Woldar, Conlon, Verstraëte–Williford, B.–Tait

Thanks to all!

This talk used [©]-licensed graphics by

Andrew Doana (dice), Andrejs Kirma (head), Gregory Sujkowski (light bulbs), Oleksandr Panasovskyi (Seashell surface), emilegraphics (Möbius band), Creative Stall (moon)