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What is this talk?

Random constructions of combinatorial objects

Specific technique to correlate good events



Motivational problem: Turán numbers

Forbidden subgraph F . How to make large F -free graph?

ex(n,F ) = max
G is F -free
n vertices

e(G )

Erdős–Stone’46

ex(n,F ) =

(
1− 1

χ(F )− 1
+ o(1)

)(
n

2

)
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G is F -free
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Erdős–Stone’46
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Useless for
bipartite F



Turán numbers: complete bipartite case

Theorem (Kovari–Sós–Turán)

The maximum number of edges in a Ks,t-free graph is ex(n,Ks,t) ≤ cs,tn
2−1/s

“Proof”:

1 Pretend that the Ks,t-free graph is regular.
Let d be the degree of each vertex.

2 Count s-stars

...

Exactly n
(d
s

)
copies

In a real proof, replace 1 by Jensen’s inequality.
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Turán numbers: complete bipartite case

Theorem (Kovari–Sós–Turán)

The maximum number of edges in a Ks,t-free graph is ex(n,Ks,t) ≤ cs,tn
2−1/s

“Proof”:

1 Pretend that the Ks,t-free graph is regular.
Let d be the degree of each vertex.

2 Count s-stars

...

Exactly n
(d
s

)
copies

At most (t−1)
(n
s

)
copies

=⇒ n
(d
s

)
≤ (t − 1)

(n
s

)
=⇒ nd s . ns

In a real proof, replace 1 by Jensen’s inequality.



Turán numbers: complete bipartite case

Upper bound:
ex(n,Ks,t) ≤ cs,tn

2−1/s

Lower bound ideas:

Doodle

Be clever Try luck
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Naive construction: what does not work

Random graph with n2−1/s edges:

Construction:

Bipartite graph on n + n vertices

Edge probability is p = n−1/s

Analysis:

Fix any s vertices on the left

N are their common neighbors

Pr[y ∈ N] = ps = 1/n

E[|N|] = 1. Good news!

There are
(n
s

)
≈ ns sets.

For each, N ∼ Poisson. Bad news!

Prob

Neighbors
n−s

c log n
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Naive construction: what does not work

Random graph with n2−1/s edges:

Construction:

Bipartite graph on n + n vertices

Edge probability is p = n−1/s

Analysis:

Fix any s vertices on the left

N are their common neighbors

Pr[y ∈ N] = ps = 1/n

E[|N|] = 1. Good news!

There are
(n
s

)
≈ ns sets.

For each, N ∼ Poisson. Bad news!

Prob

Neighbors
n−s

c log n

Ks,t-free with
t ≈ log n



Motivation: being clever

The maximum number of edges in a K2,2-free graph is

ex(n,K2,2) = Θ(n3/2).

x
y

F2
q F2

q

Connect x = (x1, x2) with y = (y1, y2) if x1y1 + x2y2 = 1.

2q2 vertices
degree q



Motivation: being clever

The maximum number of edges in a K3,3-free graph is

ex(n,K3,3) = Θ(n2−1/3).

x
y

F3
q F3

q

Connect x = (x1, x2, x3) and y = (y1, y2, y3) if (x1− y1)2 + (x2− y2)2 + (x3− y3)2 = 1.

2q3 vertices
degree ≈ q2



Motivation: being clever

The maximum number of edges in a K3,3-free graph is

ex(n,K3,3) = Θ(n2−1/3).

x
y

F3
q F3

q

Connect x = (x1, x2, x3) and y = (y1, y2, y3) if (x1− y1)2 + (x2− y2)2 + (x3− y3)2 = 1.

2q3 vertices
degree ≈ q2

More complicated
Ks,t-free graph

with t > (s − 1)!

No similar
K4,4-free graph



Try luck: random algebraic construction

x
y

Fs
q Fs

q

Connect x = (x1, . . . , xs) and y = (y1, . . . , ys) if f (x , y) = 0.

Choose f randomly among all polynomials of degree d .

Good news 1: Behaves randomly on small scale.

Good news 2: Very correlated on large scale.



Small-scale independence

x
y

Fs
q Fs

q

x ∼ y if f (x , y) = 0

Random f of deg d

Claim

For any x1, . . . , xa ∈ Fs
q and y1, . . . , yb ∈ Fs

q, the edges (xiyj : i , j) are independent, if
d ≥ d0(a, b).

Intuition:

Every function is a polynomial of degree q − 1.
Claim holds for a random function



Small-scale independence

x
y

Fs
q Fs

q

x ∼ y if f (x , y) = 0

Random f of deg d

Claim

For any x1, . . . , xa ∈ Fs
q and y1, . . . , yb ∈ Fs

q, the edges (xiyj : i , j) are independent, if
d ≥ d0(a, b).

Key proof steps:

Unique degree-d polynomial through d + 1 pts
Generic rotation of the coordinates



Large-scale correlation

...

x1

xs

y

Fs
q Fs

q

Common neighborhood of A = {x1, . . . , xs} is

N(A) = {y ∈ Fs
q : f (x1, y) = · · · = f (xs , y) = 0}

Analogies:

Linear equations Polynomial equations

Subspace Variety
Dimension d “Dimension” d
qd points Θ(qd) points
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Fs
q Fs

q

Common neighborhood of A = {x1, . . . , xs} is

N(A) = {y ∈ Fs
q : f (x1, y) = · · · = f (xs , y) = 0}

Analogies:
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Neighborhood size: punchline

Prob

Neighbors

Before

log n

Prob

Neighbors

Θ(1) log q Θ(q)

dim=0

dim=1

After
Let t � 1,

Pr[∃Ks,t subgraph] = Pr[∃A s.t. |N(A)| ≥ t]

= Pr[∃A s.t. |N(A)| ≥ Θ(q)]

= tiny



Dimension and “dimension”

x2 − y2 = 0 x2 + y2 = 0

Dimension is 1 Dimension is 1
2q pts in F2

q 1 pt in F2
q

if q ≡ 3 (mod 4)
“Dimension” is 1 “Dimension” is 0



Dimension and “dimension”

Dimension is well-behaved over Fq (algebraically closed)

For variety V , irreducible decomposition V = V1 ∪ · · · ∪ Vk .

Examples:

1 {x2 − y2 = 0} is {x − y = 0} ∪ {x + y = 0}
2 {x2 + y2 = 0} is {x + iy = 0} ∪ {x − iy = 0}

Theorem (Lang–Weil)

If variety V is irreducible over Fq, then the number of points V over Fq is
qdimV (1 + o(1)).

Problem:
What if V is irreducible over Fq but not over Fq?



Dimension and “dimension”

Problem

What if V is irreducible over Fq but not over Fq?

Irreducible decomposition
V = V1 ∪ · · · ∪ Vk

Map Frob: x 7→ xq generates Gal(F/Fq) for every extension F/Fq.



Dimension and “dimension”

Problem

What if V is irreducible over Fq but not over Fq?

Irreducible decomposition
V = V1 ∪ · · · ∪ Vk

Map Frob: x 7→ xq generates Gal(F/Fq) for every extension F/Fq.

Corollary

1 Frob permutes V1, . . . ,Vk , and does so transitively

2 V (Fq) = Vi (Fq)

Proof:

1 If V1, ...,Vt is an orbit, then V1 ∪ · · · ∪ Vt is an Fq-component

2 The Frobenius map does not move Fq-points



Dimension and “dimension”

Problem

What if V is irreducible over Fq but not over Fq?

Irreducible decomposition
V = V1 ∪ · · · ∪ Vk

Map Frob: x 7→ xq generates Gal(F/Fq) for every extension F/Fq.

Corollary

1 Frob permutes V1, . . . ,Vk , and does so transitively

2 V (Fq) = Vi (Fq)

It follows that
V (Fq) = V1(F1) ∩ · · · ∩ Vk(Fq)

Induction on the
dimension of V



Technicalities and an embellishment

The iteration:

1 Break the variety into Fq-components

2 Break each Fq-component V into Fq-components V1, . . . ,Vk

3 Replace V by V1 ∩ · · · ∩ Vk

4 Repeat

Key technical problem

Must control the number of components

Solution 1

Number of components is ≤ degV

deg(U ∩ V ) ≤ (degV )(degU)
(Bezout’s inequality)

Solution 2

Get rid of probability

Do dimension-counting
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Back to neighborhood size

Prob

Neighbors

Before

log n

Prob

Neighbors

Θ(1) log q Θ(q)

dim=0

dim=1

After
Let t � 1,

Pr[∃Ks,t subgraph] = Pr[∃A s.t. |N(A)| ≥ t]

= Pr[∃A s.t. |N(A)| ≥ Θ(q)]

= tiny
This step



Probabilistic argument

Goal

An upper bound on Pr
[
|N(A)| ≥ T

]
, for T = Θ(q)

Known facts:

If edges were independent, N(A) ≈ Poisson(1).
Edges are k-wise independent, for large k .

1 `’th moment of N(A)

E
[
N(A)`

]
=
∑

v1,...,v`

E
[
1v1∈N(A) · . . . · 1ve ll∈N(A)

]
is the same as that of Poisson(1)

2 By Markov’s inequality

Pr
[
N(A) ≥ T

]
= Pr

[
N(A)` ≥ T `

]
≤

E
[
N(A)`

]
T `

=
O(1)

T `
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Dimension-counting argument

Goal

An upper bound on Pr
[
|N(A)| ≥ T

]
, for T = Θ(q)

Key points:

1 Pr
[
|N(A)| ≥ Ω(q)

]
= Pr

[
“dimension” of N(A) ≥ 1

]
≤ Pr

[
dimension of N(A) ≥ 1

]
2 Dimension-d variety behaves similarly to a set of size qd .

Example (pigeonhole principle):

Vx = {y : (x , y) ∈ V }
U = {x : dimVx ≥ d}

then

dimU ≤ dimV − d



Dimension-counting argument

Goal

An upper bound on Pr
[
|N(A)| ≥ T

]
, for T = Θ(q)

Key points:

1 Pr
[
|N(A)| ≥ Ω(q)

]
= Pr

[
“dimension” of N(A) ≥ 1

]
≤ Pr

[
dimension of N(A) ≥ 1

]
2 Dimension-d variety behaves similarly to a set of size qd .

Example (pigeonhole principle):

Vx = {y : (x , y) ∈ V }
U = {x : dimVx ≥ d}

then

dimU ≤ dimV − d The rest is
details



Improvement

x
y

Fs
q Fs

q

What does Fs
q look like?



Improvement

Fs
q looks like. . . a) b) c) d) e)

(flat)

... but it better be like (wobbly)

Theorem (B.)

The exist Ks,t-free graphs with csn
2−1/s edges and t ≤ C s .
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Another problem

Complete bipartite graphs:
ex(n,Ks,t) ∼ n2−1/t if s � t

Cycles:
ex(n,C2`) ≤ c`n

1+1/` sharp for ` = 2, 3, 5

“Proof”:

1 Pretend that the C2t-free graph is d-regular.

2 Pretend that the graph is in fact {C3,C4, . . . ,C2`}-free

3

1 d d(d − 1) ≈ d` ≤ n

· · ·

· · ·

· · ·



Another problem

Complete bipartite graphs:
ex(n,Ks,t) ∼ n2−1/t if s � t

Cycles:
ex(n,C2`) ≤ c`n

1+1/` sharp for ` = 2, 3, 5

“Proof”:

1 Pretend that the C2t-free graph is d-regular.

2 Pretend that the graph is in fact {C3,C4, . . . ,C2`}-free

3

1 d d(d − 1) ≈ d` ≤ n

· · ·

· · ·

· · ·



Another problem

Complete bipartite graphs:
ex(n,Ks,t) ∼ n2−1/t if s � t

Cycles:
ex(n,C2`) ≤ c`n

1+1/` sharp for ` = 2, 3, 5

“Proof”:

1 Pretend that the C2t-free graph is d-regular.

2 Pretend that the graph is in fact {C3,C4, . . . ,C2`}-free

3

1 d d(d − 1) ≈ d` ≤ n

· · ·

· · ·

· · ·



Another problem

Complete bipartite graphs:
ex(n,Ks,t) ∼ n2−1/t if s � t

Cycles:
ex(n,C2`) ≤ c`n

1+1/` sharp for ` = 2, 3, 5

“Proof”:

1 Pretend that the C2t-free graph is d-regular.

2 Pretend that the graph is in fact {C3,C4, . . . ,C2`}-free

3

1 d d(d − 1) ≈ d` ≤ n

· · ·

· · ·

· · ·

Actual proofs for cycles
are messy



Theta graphs

Theta graph Θ4,2 = C8 Theta graph Θ4,3

Upper bound (Faudree–Simonovits):
ex(n,Θ`,t) ≤ c`,tn

1+1/`

Lower bound (Conlon):
ex(n,Θ`,t) ≥ 1

2n
1+1/` for t ≥ t(`)



Conlon’s construction

Lower bound (Conlon):
ex(n,Θ`,t) ≥ 1

2n
1+1/` for t ≥ t(`)

F`
q

...

F`
q

...

x

y
Edges:

x ∼ y if

f1(x , y) = · · · = f`−1(x , y) = 0

Random f1, . . . , f`

Average degree is nq−(`−1) = q

Path counting:
Path x1y1x2y2 · · · is a solution to f (x1, y1) = f (x2, y2) = · · · = 0

s.t. xi 6= xj & yi 6= yj

Key point: If U,V are varieties, then U \ V has “dimension”
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Conlon’s construction

Lower bound (Conlon):
ex(n,Θ`,t) ≥ 1
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1+1/` for t ≥ t(`)
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Theta graphs, more carefully

Upper bound (B.–Tait):

For any `, we have ex(n,Θ`,t) ≤ c`t
1−1/` · n1+1/`

Lower bound (B.–Tait):

For odd `, we have ex(n,Θ`,t) ≥ c ′`t
1−1/` · n1+1/`

Blowing up Conlon:

...
...
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Theta graphs, more carefully

Upper bound (B.–Tait):

For any `, we have ex(n,Θ`,t) ≤ c`t
1−1/` · n1+1/`

Lower bound (B.–Tait):

For odd `, we have ex(n,Θ`,t) ≥ c ′`t
1−1/` · n1+1/`

Blowing up Conlon:

...
...

x

y
Consider Θ`,T :

Endpoints x , y

Key observation:
x , y are in different blobs
because ` is odd

Conclusion:
Θ`,T/c in original



Turán exponents

Clonining the path thrice in two waysx:

⇓ ⇓

Generally:
T is a rooted tree (with several roots)

T p consists of all p-fold clones of T

Theorem (B.–Conlon)

For every rational number r ∈ [1, 2], there is a T such that

ex(n, T p) = Θ(nr )

for all p ≥ p0.
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B.–Tait

Ks,t-free constructions:
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