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What is this talk?

m Random constructions of combinatorial objects

m Specific technique to correlate good events



Mortivational prorlem: Turan nummeers

Forbidden subgraph F. How to make large F-free graph?

ex(n, F) - G irsng;);ree e(G)
n vertices

ex(n, F) = <1 - ﬁ + 0(1)> ('2’>

Erdés—Stone’'46



Mortivational prorlem: Turan nummeers

Forbidden subgraph F. How to make large F-free graph?

ex(n, F) - G irsng;)%ree e(G)
n vertices

ex(n, F) = <1 - X(F;_l + 0(1)> (’2’>

Useless for
bipartite F

Erdés—Stone’'46




Turan NUMBers: complete ripartite case

Theorem (Kovari-Sés—Turan)

The maximum number of edges in a Ks ;-free graph is ex(n, Ks ) < cs,,_bnz_l/s

"Proos":
Pretend that the Kj :-free graph is regular.
Let d be the degree of each vertex.

Count s-stars
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Turan NUMBers: complete ripartite case

Theorem (Kovari-Sés—Turan)
The maximum number of edges in a Ks ;-free graph is ex(n, Ks ) < cs,,_bnz_l/s
"Proos":
Pretend that the Kj :-free graph is regular.
Let d be the degree of each vertex.

Count s-stars
Exactly n(‘sj) copies
At most (t—1)(7) copies
— n(9) < (- 1)()

— nd* < nf

In a real proof, replace H by Jensen's inequality.
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Lower bound ideas:
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Turan NUMBers: complete ripartite case

Upper bound:

ex(n, Kst) < cs’,_»n2_1/5

Lower bound ideas:

Doodle Be clever
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Naive construction: what does not work

2—-1/s

Random graph with n edges:

Construction:

m Bipartite graph on n+ n vertices

m Edge probability is p = n~1/s
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m E[|N|] = 1. Good news!



Naive construction: what does not work

Random graph with n?>~/* edges:
Construction:
m Bipartite graph on n+ n vertices
m Edge probability is p = n~1/s
Analysis: Pro

m Fix any s vertices on the left
m N are their common neighbors
mPrlye N|l=p°=1/n

m E[|N|] = 1. Good news!

m There are (;’) ~ n° sets.

Neighbors

1
clogn

m For each, N ~ Poisson. Bad news!



Naive construction: what does not work

2—-1/s

edges:

Random graph with n

Construction:
K +-free with

t~logn

m Bipartite graph on n+ n vertices
1/s

m Edge probability is p = n~

Analysis: bro
m Fix any s vertices on the left
m N are their common neighbors
mPrlye N|l=p°=1/n
m E[|N|] = 1. Good news!

m There are (;’) ~ n° sets.

Neighbors

1
clogn

m For each, N ~ Poisson. Bad news!



Mortivation: reing clever

The maximum number of edges in a K> »>-free graph is

ex(n, Kap) = o(n%?).

2 2
g g
Connect x = (x1,x2) with y = (y1, y2) if x1y1 + xoy2 = 1.

2q? vertices
degree g



Mortivation: reing clever

The maximum number of edges in a K3 3-free graph is

ex(n, K33) = o(n*1/3).

3 3
g g
Connect x = (x1,x2,x3) and y = (y1,y2,y3) if (x1 = y1)* + (x2 — y2)* + (x3 — y3)* = 1.

2q3 vertices
degree ~ ¢



Mortivation: reing clever

The maximum number of edges in a K3 3-free graph is

ex(n, K33) = o(n*1/3).

3 3
g g

Connect x = (x1,x2,x3) and y = (y1,y2,y3) if (x1 = y1)* + (x2 — y2)* + (x3 —y3)* = 1.

More complicated
K ¢-free graph
with £ > (s — 1)!

2q3 vertices
degree ~ ¢

No similar
Ky 4-free graph




Try luck: random alaerraic construction

L L
Connect x = (x1,...,xs) and y = (y1,...,ys) if f(x,y) =0.
Choose f randomly among all polynomials of degree d.

Good news 1: Behaves randomly on small scale.

Good news 2: Very correlated on large scale.



Small-scale independence

F F

x~yif f(x,y)=0
Random f of deg d

Claim

For any x1,...,x; € Fg and y1,...,ys € Fg, the edges (x;y; : i,j) are independent, if
d > do(a, b).

Intuition:
m Every function is a polynomial of degree g — 1.
m Claim holds for a random function



Small-scale independence

F F

x~yif f(x,y)=0
Random f of deg d

Claim

For any x1,...,x; € Fg and y1,...,ys € Fg, the edges (x;y; : i,j) are independent, if
d > do(a, b).

Key proof steps:
m Unique degree-d polynomial through d + 1 pts
m Generic rotation of the coordinates



Larae-scale correlation

Common neighborhood of A = {x1,...,xs} is

N(A) ={y e Fg: f(x1,y) =+ =f(x,y) =0}
Analogies:

Linear equations Polynomial equations



Larae-scale correlation

F$ F¢
Common neighborhood of A = {x1,...,xs} is
N(A) ={y e Fg: f(x1,y) =+ = f(xs,y) = 0}
Analogies:
Linear equations Polynomial equations

Subspace Variety



Larae-scale correlation

F$ F¢
Common neighborhood of A = {x1,...,xs} is
N(A) ={y e Fg: f(x1,y) =+ =f(x,y) =0}
Analogies:
Linear equations Polynomial equations
Subspace Variety

Dimension d “Dimension” d



Larae-scale correlation

F$ F¢
Common neighborhood of A = {x1,...,xs} is
N(A) ={y e Fg: f(x1,y) =+ = f(xs,y) = 0}
Analogies:
Linear equations Polynomial equations
Subspace Variety
Dimension d “Dimension” d

q9 points ©(q9) points



Neicghrorhood size: punchline

Prob Prob
dim=0
dim=1
Neighbors Neighbors
log n O(1) logg  ©(q)
Before After

Let t > 1,
Pr[3Ks,; subgraph] = Pr[3A s.t. [N(A)| > t]
= Pr[3A s.t. |[N(A)| > ©(q)]
= tiny



Dimension and "dimension”

x2—y?2=0 x2+y?2=0
Dimension is 1 Dimension is 1
2q pts in ]Fg 1 ptin IF%

if g =3 (mod 4)

“Dimension” is 1 “Dimension” is 0



Dimension and "dimension”

Dimension is well-behaved over F, (algebraically closed)

For variety V/, irreducible decomposition V =V, U--- U V.

Examples:
{x*—y?=0}is{x—y=0}U{x+y=0}
{x>+y?2=0}is {x+iy =0} U{x — iy =0}

Theorem (Lang—Weil)
If variety V is irreducible over Fy, then the number of points V over Fq is
g™V (1+ o(1)).

Problem:
What if V is irreducible over [F; but not over E?



Dimension and "dimension”

Problem

What if V is irreducible over Fq but not over IET,?

Irreducible decomposition
V=Wu---uVg

Map Frob: x — x9 generates Gal(F/F,) for every extension F/F,.



Dimension and "dimension”

Problem

What if V is irreducible over Fq but not over Fq?

Irreducible decomposition
V=WVU---UV
Map Frob: x — x9 generates Gal(F/F,) for every extension F/F,.

Corollary

Frob permutes Vi, ..., Vi, and does so transitively
V(Fq) = Vi(Fq)

Proof:
If Vi,..., Vi is an orbit, then Vi U---U V; is an [Fg-component

The Frobenius map does not move [F4-points



Dimension and "dimension”

Problem

What if V is irreducible over Fq but not over Fq?

Irreducible decomposition
V=WVU---UV
Map Frob: x — x9 generates Gal(F/F,) for every extension F/F,.

Corollary

Frob permutes Vi, ..., Vi, and does so transitively
V(Fq) = Vi(Fq)

It follows that

V(F,) = Vi(F1) N ---N Vi (F
( q) 1(F1) K q) Induction on the

dimension of V



Technicalities and an emrellishment

The iteration:
Break the variety into F,-components

Break each Fg-component V into Fg-components Vi,..., Vi
Replace V by Vi N---N Vg
Repeat

Key technical problem

Must control the number of components
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(Bezout's inequality)



Technicalities and an emrellishment

The iteration:
Break the variety into F,-components

Break each Fg-component V into Fg-components Vi,..., Vi
Replace V by Vi N---N Vg
Repeat

Key technical problem

Must control the number of components

m Number of components is < deg V Get rid of probability

- deg(U N V) < (deg V)(deg U) Do dimension-counting
(Bezout's inequality)



Back to neighrorhood size

Prob Prob
dim=0
dim=1
Neighbors Neighbors
log n O(1) logg  ©(q)
Before After
Let t > 1,
Pr[3Ks,; subgraph] = Pr[3A s.t. [N(A)| > t]
: = Pr[dA s.t. [N(A)| > ©
This step [2A st [N(A)] = O(g)]

\@tiny




Prorarilistic araumentt

An upper bound on Pr[|N(A)| > T], for T = ©(q)

Known facts:
m If edges were independent, N(A) ~ Poisson(1).
m Edges are k-wise independent, for large k.



Prorarilistic araumentt

An upper bound on Pr[|N(A)| > T], for T = ©(q)

Known facts:
m If edges were independent, N(A) = Poisson(1).
m Edges are k-wise independent, for large k.

¢'th moment of N(A)
Z E[1,enca) - Luena))

V1oVl

is the same as that of Poisson(1)

By Markov's inequality

Pr[N(A) > T] = Pr[N(A)" > TY] < =




Dimension-counting araumentt

An upper bound on Pr[|N(A)| > T], for T = ©(q)

Key points:
Pr[[N(A)| > Q(q)] = Pr[“dimension” of N(A)
< Pr[ dimension of N(A)

> 1]
> 1]
Dimension-d variety behaves similarly to a set of size g9.

Example (pigeonhole principle):

Vi={y:(xy) eV}
U={x:dimV, > d}

then

dmU<dimV —d



Dimension-counting araumentt

An upper bound on Pr[|N(A)| > T], for T = ©(q)

Key points:
Pr[[N(A)| > Q(q)] = Pr[“dimension” of N(A)
< Pr[ dimension of N(A)

> 1]
> 1]
Dimension-d variety behaves similarly to a set of size g9.
Example (pigeonhole principle):
Vi={y:(x,y)e V}
U={x:dimV, > d}

then

The rest is

dmU<dimV —d h
details



IMmprovement

ANV

What does Fﬁ, look like?




IF; looks like...  a) %% b) c)% d) & e)%




IMmprovement

[F5 looks like. .. (flat)




IMmprovement

[F5 looks like. .. (flat)
... but it better be like <> (wobbly)

Theorem (B.)

The exist K, ;-free graphs with csn®>1/% edges and t < C°.
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Another proglem

Complete bipartite graphs:
ex(n, Kse) ~ n>~ Yt if s>t

Cycles:
ex(n, Cy) < ¢on™Y/¢  sharp for £ = 2,3,5

"Proos":

Pretend that the Cy;-free graph is d-regular.
Pretend that the graph is in fact {G3, Gy, ..., Cyp}-free

. Actual proofs for cycles

are messy




Theta graph ©45 = G Theta graph ©43

Upper bound (Faudree—-Simonovits):
ex(n,©y;) < cz,tnlﬂ/g

Lower bound (Conlon):
ex(n,©p¢) > 2ntFY/E for t > t(0)



Conlon’s construction

Lower bound (Conlon):
ex(n, ©yp¢) > 2nlt1/ for t > t(¢)

Edges:
¢ //.y x ~yif
xeo”] . filx.y) =+ =fia(xy) =0
Random f,...,f
4 L4 Average degree is ng~ (‘"1 = ¢
F FL



Conlon’s construction

Lower bound (Conlon):
ex(n, ©yp¢) > 2nlt1/ for t > t(¢)

Edges:
’ //.y x o~y if
xe| ° Alx,y) = =fra(x,y) =0
Random f,...,f
4 L] Average degree is ng~ (‘"1 = ¢
—
T’ T

Path counting:
Path x1y1x0y> - - - is a solution to f(x1,y1) = f(x2,y2) =--- =0

[3tw#ﬁ&w¢ﬁ]




Conlon’s construction

Lower bound (Conlon):
ex(n, ©yp¢) > 2nlt1/ for t > t(¢)

Edges:
’ //.y x o~y if
xe| ° Alx,y) = =fra(x,y) =0
Random f,...,f
4 (] Average degree is ng~ (‘"1 = ¢
—
T’ T

Path counting:
Path x1y1x0y> - - - is a solution to f(x1,y1) = f(x2,y2) =--- =0

[stxirx&yity

Key point: If U, V are varieties, then U\ V has “dimension”




Theta araphs, more carefully

Upper bound (B.-Tait):
For any ¢, we have ex(n,© ) < et/ g1/t

Lower bound (B.-Tait):
For odd ¢, we have ex(n, ©;) > cjt'=1/¢. pl+1/t
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Upper bound (B.-Tait):
For any ¢, we have ex(n,© ) < et/ g1/t

Lower bound (B.-Tait):
For odd ¢, we have ex(n, ©;) > cjt'=1/¢. pl+1/t

Blowing up Conlon:
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Endpoints x, y
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Theta araphs, more carefully

Upper bound (B.-Tait):
For any ¢, we have ex(n,© ) < et/ g1/t

Lower bound (B.-Tait):
For odd ¢, we have ex(n, ©;) > cjt'=1/¢. pl+1/t

Blowing up Conlon:

Consider O, 7:
Endpoints x, y

Key observation:
X,y are in different blobs
because ¢ is odd
Conclusion:
Oy, 7/c in original

\

&



Turan exponents

Clonining the path thrice in two waysx:

@ —o—¢ 0@

MmN



Turan exponents

Clonining the path thrice in two waysx:
@—0—0—0—@

Generally:

T is a rooted tree (with several roots)
TP consists of all p—fold clones of T

Theorem (B.—Conlon)

For every rational number r € [1,2], there is a T such that
ex(n, T?) = (n")

for all p > po.



Upper bounds for cycles and thetas:
Kovari-Sés—Turan, Bondy-Simonovits, Faudree—Simonovits, Verstraéte, Pikhurko, B.—Jiang,
B.-Tait

K, :-free constructions:
Erd6s—Rényi—Sés, Brown, Fiiredi, Kolldr—Rényai—Szabé, Alon—Rényai—-Szabd,
B.—Blagojevi¢—Karasev, Ball-Pepe, B.

Theta-free constructions:
Brown, Benson, Wenger, Fiiredi, Lazebnik—Ustimenko—Woldar, Conlon, Verstraéte-Williford,

B.—-Tait
Thanks to all!

This talk used @-licensed graphics by
Andrew Doana (dice), Andrejs Kirma (head), Gregory Sujkowski (light bulbs), Oleksandr
Panasovskyi (Seashell surface), emilegraphics (Mdbius band), Creative Stall (moon)



