Random algebraic constructions

Boris Bukh

26 March 2022

Based on joint works with
Pavle Blagojević, David Conlon, Zilin Jiang, Roman Karasev, Michael Tait
and on prior works of many others

What is this talk?

- Random constructions of combinatorial objects
- Specific technique to correlate good events

Motivational problem: Turán numbers

Forbidden subgraph F. How to make large F-free graph?

$$
\operatorname{ex}(n, F)=\max _{\substack{G \text { is } F \text {-free } \\ n \text { vertices }}} e(G)
$$

Erdős-Stone'46

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}+o(1)\right)\binom{n}{2}
$$

Motivational problem: Turán numbers

Forbidden subgraph F. How to make large F-free graph?

$$
\operatorname{ex}(n, F)=\max _{\substack{G \text { is } F \text {-free } \\ n \text { vertices }}} e(G)
$$

Erdős-Stone'46

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}+o(1)\right)\binom{n}{2}
$$

Useless for bipartite F

Turán numbers: complete sipartite case

Theorem (Kovari-Sós-Turán)

The maximum number of edges in a $K_{s, t}-f r e e ~ g r a p h ~ i s ~ e x ~\left(n, K_{s, t}\right) \leq c_{s, t} n^{2-1 / s}$ "Proof":

1 Pretend that the $K_{s, t}-$ free graph is regular. Let d be the degree of each vertex.

2 Count s-stars

Turán numbers: complete sipartite case

Theorem (Kovari-Sós-Turán)

The maximum number of edges in a $K_{s, t}-f r e e ~ g r a p h ~ i s ~ e x ~\left(n, K_{s, t}\right) \leq c_{s, t} n^{2-1 / s}$ "Proof":

1 Pretend that the $K_{s, t}$-free graph is regular.
Let d be the degree of each vertex.
2 Count s-stars

Turán numbers: complete sipartite case

Theorem (Kovari-Sós-Turán)

The maximum number of edges in a $K_{s, t}-f r e e ~ g r a p h ~ i s ~ e x ~\left(n, K_{s, t}\right) \leq c_{s, t} n^{2-1 / s}$ "Proof":

1 Pretend that the $K_{s, t}$-free graph is regular.
Let d be the degree of each vertex.
2 Count s-stars

Exactly $n\binom{d}{s}$ copies
At most $(t-1)\binom{n}{s}$ copies

Turán numbers: complete sipartite case

Theorem (Kovari-Sós-Turán)

The maximum number of edges in a $K_{s, t}-$ free graph is ex $\left(n, K_{s, t}\right) \leq c_{s, t} n^{2-1 / s}$ "Proof":

1 Pretend that the $K_{s, t}$-free graph is regular.
Let d be the degree of each vertex.
2 Count s-stars

$$
\begin{aligned}
& \text { Exactly } n\binom{d}{s} \text { copies } \\
& \text { At most }(t-1)\binom{n}{s} \text { copies } \\
& \Longrightarrow n\binom{d}{s} \leq(t-1)\binom{n}{s} \\
& \Longrightarrow n d^{s} \lesssim n^{s}
\end{aligned}
$$

In a real proof, replace 1 by Jensen's inequality.

Turán numbers: complete bipartite case

Upper bound:

$$
\operatorname{ex}\left(n, K_{s, t}\right) \leq c_{s, t} n^{2-1 / s}
$$

Lower bound ideas:

Turán numbers: complete sipartite case

Upper bound:

$$
\operatorname{ex}\left(n, K_{s, t}\right) \leq c_{s, t} n^{2-1 / s}
$$

Lower bound ideas:

Turán numbers: complete sipartite case

Upper bound:

$$
\operatorname{ex}\left(n, K_{s, t}\right) \leq c_{s, t} n^{2-1 / s}
$$

Lower bound ideas:

Naive construction: what does not work

Random graph with $n^{2-1 / s}$ edges:
Construction:

- Bipartite graph on $n+n$ vertices
- Edge probability is $p=n^{-1 / s}$

Naive construction: what does not work

Random graph with $n^{2-1 / s}$ edges:
Construction:

- Bipartite graph on $n+n$ vertices
- Edge probability is $p=n^{-1 / s}$

Analysis:

- Fix any s vertices on the left
- N are their common neighbors

■ $\operatorname{Pr}[y \in N]=p^{s}=1 / n$

- $\mathbb{E}[|N|]=1$. Good news!

Naive construction: what does not work

Random graph with $n^{2-1 / s}$ edges:
Construction:

- Bipartite graph on $n+n$ vertices
- Edge probability is $p=n^{-1 / s}$

Analysis:

- Fix any s vertices on the left
- N are their common neighbors

■ $\operatorname{Pr}[y \in N]=p^{s}=1 / n$

- $\mathbb{E}[|N|]=1$. Good news!
- There are $\binom{n}{s} \approx n^{s}$ sets.

■ For each, $N \sim$ Poisson. Bad news!

Naive construction: what does not work

Random graph with $n^{2-1 / s}$ edges:
Construction:
■ Bipartite graph on $n+n$ vertices

- Edge probability is $p=n^{-1 / s}$

Analysis:

- Fix any s vertices on the left
- N are their common neighbors

■ $\operatorname{Pr}[y \in N]=p^{s}=1 / n$
■ $\mathbb{E}[|N|]=1$. Good news!

- There are $\binom{n}{s} \approx n^{s}$ sets.

■ For each, $N \sim$ Poisson. Bad news!

Motivation: Being clever

The maximum number of edges in a $K_{2,2}$-free graph is

$$
\mathrm{ex}\left(n, K_{2,2}\right)=\Theta\left(n^{3 / 2}\right)
$$

Connect $x=\left(x_{1}, x_{2}\right)$ with $y=\left(y_{1}, y_{2}\right)$ if $x_{1} y_{1}+x_{2} y_{2}=1$.

$$
\begin{gathered}
2 q^{2} \text { vertices } \\
\text { degree } q
\end{gathered}
$$

Motivation: Being clever

The maximum number of edges in a $K_{3,3}$-free graph is

$$
\operatorname{ex}\left(n, K_{3,3}\right)=\Theta\left(n^{2-1 / 3}\right)
$$

Connect $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ if $\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}=1$.

$$
\begin{aligned}
& 2 q^{3} \text { vertices } \\
& \text { degree } \approx q^{2}
\end{aligned}
$$

Motivation: Being clever

The maximum number of edges in a $K_{3,3}$-free graph is

$$
\operatorname{ex}\left(n, K_{3,3}\right)=\Theta\left(n^{2-1 / 3}\right)
$$

Connect $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ if $\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}=1$.

No similar $K_{4,4}-$ free graph
$2 q^{3}$ vertices degree $\approx q^{2}$

More complicated $K_{s, t}-$ free graph with $t>(s-1)$!

Try luck: random algebraic construction

Connect $x=\left(x_{1}, \ldots, x_{s}\right)$ and $y=\left(y_{1}, \ldots, y_{s}\right)$ if $f(x, y)=0$.
Choose f randomly among all polynomials of degree d.
Good news 1: Behaves randomly on small scale.
Good news 2: Very correlated on large scale.

Small-scale independence

Claim

For any $x_{1}, \ldots, x_{a} \in \mathbb{F}_{q}^{s}$ and $y_{1}, \ldots, y_{b} \in \mathbb{F}_{q}^{s}$, the edges $\left(x_{i} y_{j}: i, j\right)$ are independent, if $d \geq d_{0}(a, b)$.

Intuition:

- Every function is a polynomial of degree $q-1$.
- Claim holds for a random function

Small-scale independence

Claim

For any $x_{1}, \ldots, x_{a} \in \mathbb{F}_{q}^{s}$ and $y_{1}, \ldots, y_{b} \in \mathbb{F}_{q}^{s}$, the edges $\left(x_{i} y_{j}: i, j\right)$ are independent, if $d \geq d_{0}(a, b)$.

Key proof steps:

- Unique degree- d polynomial through $d+1$ pts

■ Generic rotation of the coordinates

Large-scale correlation

Common neighborhood of $A=\left\{x_{1}, \ldots, x_{s}\right\}$ is

$$
N(A)=\left\{y \in \mathbb{F}_{q}^{s}: f\left(x_{1}, y\right)=\cdots=f\left(x_{s}, y\right)=0\right\}
$$

Analogies:

$$
\text { Linear equations } \quad \text { Polynomial equations }
$$

Large-scale correlation

Common neighborhood of $A=\left\{x_{1}, \ldots, x_{s}\right\}$ is

$$
N(A)=\left\{y \in \mathbb{F}_{q}^{s}: f\left(x_{1}, y\right)=\cdots=f\left(x_{s}, y\right)=0\right\}
$$

Analogies:

$$
\begin{array}{ll}
\text { Linear equations } & \text { Polynomial equations } \\
\text { Subspace } & \text { Variety }
\end{array}
$$

Large-scale correlation

Common neighborhood of $A=\left\{x_{1}, \ldots, x_{s}\right\}$ is

$$
N(A)=\left\{y \in \mathbb{F}_{q}^{s}: f\left(x_{1}, y\right)=\cdots=f\left(x_{s}, y\right)=0\right\}
$$

Analogies:

Linear equations
Subspace
Dimension d

Polynomial equations
Variety
"Dimension" d

Large-scale correlation

Common neighborhood of $A=\left\{x_{1}, \ldots, x_{s}\right\}$ is

$$
N(A)=\left\{y \in \mathbb{F}_{q}^{s}: f\left(x_{1}, y\right)=\cdots=f\left(x_{s}, y\right)=0\right\}
$$

Analogies:

$$
\begin{array}{ll}
\text { Linear equations } & \text { Polynomial equations } \\
\text { Subspace } & \text { Variety } \\
\text { Dimension } d & \text { "Dimension" } d \\
q^{d} \text { points } & \Theta\left(q^{d}\right) \text { points }
\end{array}
$$

NeighBorhood size: punchline

Let $t \gg 1$,

$$
\begin{aligned}
\operatorname{Pr}\left[\exists K_{s, t} \text { subgraph }\right] & =\operatorname{Pr}[\exists A \text { s.t. }|N(A)| \geq t] \\
& =\operatorname{Pr}[\exists A \text { s.t. }|N(A)| \geq \Theta(q)] \\
& =\text { tiny }
\end{aligned}
$$

Dimension is 1
$2 q$ pts in \mathbb{F}_{q}^{2}
"Dimension" is 1

Dimension is 1 1 pt in \mathbb{F}_{q}^{2} if $q \equiv 3(\bmod 4)$ "Dimension" is 0

Dimension and "dimension"

Dimension is well-behaved over $\overline{\mathbb{F}_{q}}$ (algebraically closed)
For variety V, irreducible decomposition $V=V_{1} \cup \cdots \cup V_{k}$.
Examples:
$1\left\{x^{2}-y^{2}=0\right\}$ is $\{x-y=0\} \cup\{x+y=0\}$
2 $\left\{x^{2}+y^{2}=0\right\}$ is $\{x+i y=0\} \cup\{x-i y=0\}$

Theorem (Lang-Weil)

If variety V is irreducible over $\overline{\mathbb{F}_{q}}$, then the number of points V over \mathbb{F}_{q} is $q^{\operatorname{dim} V}(1+o(1))$.

Problem:
What if V is irreducible over \mathbb{F}_{q} but not over $\overline{\mathbb{F}_{q}}$?

Dimension and "dimension"

Problem

What if V is irreducible over \mathbb{F}_{q} but not over $\overline{\mathbb{F}_{q}}$?
Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{k}
$$

Map Frob: $x \mapsto x^{q}$ generates $\operatorname{Gal}\left(F / \mathbb{F}_{q}\right)$ for every extension F / \mathbb{F}_{q}.

Dimension and "dimension"

Problem

What if V is irreducible over \mathbb{F}_{q} but not over $\overline{\mathbb{F}_{q}}$?
Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{k}
$$

Map Frob: $x \mapsto x^{q}$ generates $\operatorname{Gal}\left(F / \mathbb{F}_{q}\right)$ for every extension F / \mathbb{F}_{q}.

Corollary

1 Frob permutes V_{1}, \ldots, V_{k}, and does so transitively
$2 V\left(\mathbb{F}_{q}\right)=V_{i}\left(\mathbb{F}_{q}\right)$

Proof:
1 If V_{1}, \ldots, V_{t} is an orbit, then $V_{1} \cup \cdots \cup V_{t}$ is an \mathbb{F}_{q}-component
2 The Frobenius map does not move $\mathbb{F}_{q^{-}}$points

Dimension and "dimension"

Problem

What if V is irreducible over \mathbb{F}_{q} but not over $\overline{\mathbb{F}_{q}}$?
Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{k}
$$

Map Frob: $x \mapsto x^{q}$ generates $\operatorname{Gal}\left(F / \mathbb{F}_{q}\right)$ for every extension F / \mathbb{F}_{q}.

Corollary

1 Frob permutes V_{1}, \ldots, V_{k}, and does so transitively
$2 V\left(\mathbb{F}_{q}\right)=V_{i}\left(\mathbb{F}_{q}\right)$

It follows that

$$
V\left(\mathbb{F}_{q}\right)=V_{1}\left(\mathbb{F}_{1}\right) \cap \cdots \cap V_{k}\left(\mathbb{F}_{q}\right)
$$

Induction on the dimension of V

Technicalities and an embellishment

The iteration:
1 Break the variety into \mathbb{F}_{q}-components
2 Break each \mathbb{F}_{q}-component V into $\overline{\mathbb{F}_{q}}$-components V_{1}, \ldots, V_{k}
3 Replace V by $V_{1} \cap \cdots \cap V_{k}$
4 Repeat

Key technical problem
Must control the number of components

Technicalities and an embellishment

The iteration:
1 Break the variety into \mathbb{F}_{q}-components
2 Break each \mathbb{F}_{q}-component V into $\overline{\mathbb{F}_{q}}$-components V_{1}, \ldots, V_{k}
3 Replace V by $V_{1} \cap \cdots \cap V_{k}$
4 Repeat

Key technical problem

Must control the number of components

Solution 1

- Number of components is $\leq \operatorname{deg} V$
- $\operatorname{deg}(U \cap V) \leq(\operatorname{deg} V)(\operatorname{deg} U)$ (Bezout's inequality)

Technicalities and an embellishment

The iteration:
1 Break the variety into \mathbb{F}_{q}-components
2 Break each \mathbb{F}_{q}-component V into $\overline{\mathbb{F}_{q}}$-components V_{1}, \ldots, V_{k}
3 Replace V by $V_{1} \cap \cdots \cap V_{k}$
4 Repeat

Key technical problem

Must control the number of components

Solution 1

- Number of components is $\leq \operatorname{deg} V$
- $\operatorname{deg}(U \cap V) \leq(\operatorname{deg} V)(\operatorname{deg} U)$ (Bezout's inequality)

Solution 2

Get rid of probability
Do dimension-counting

Back to neichBorhood size

Let $t \gg 1$,

$$
\begin{aligned}
\operatorname{Pr}\left[\exists K_{s, t} \text { subgraph }\right] & =\operatorname{Pr}[\exists A \text { s.t. }|N(A)| \geq t] \\
& =\operatorname{Pr}[\exists A \text { s.t. }|N(A)| \geq \Theta(q)] \\
& \xlongequal{\text { tiny }}
\end{aligned}
$$

This step

Probabilistic argument

Goal

An upper bound on $\operatorname{Pr}[|N(A)| \geq T]$, for $T=\Theta(q)$
Known facts:
■ If edges were independent, $N(A) \approx$ Poisson (1).

- Edges are k-wise independent, for large k.

Probabilistic arcument

Goal

An upper bound on $\operatorname{Pr}[|N(A)| \geq T]$, for $T=\Theta(q)$
Known facts:
■ If edges were independent, $N(A) \approx$ Poisson (1).

- Edges are k-wise independent, for large k.

1 l'th moment of $N(A)$

$$
\mathbb{E}\left[N(A)^{\ell}\right]=\sum_{v_{1}, \ldots, v_{\ell}} \mathbb{E}\left[\mathbf{1}_{v_{1} \in N(A)} \cdot \ldots \cdot \mathbf{1}_{v_{e} \| \in N(A)}\right]
$$

is the same as that of Poisson(1)
2 By Markov's inequality

$$
\operatorname{Pr}[N(A) \geq T]=\operatorname{Pr}\left[N(A)^{\ell} \geq T^{\ell}\right] \leq \frac{\mathbb{E}\left[N(A)^{\ell}\right]}{T^{\ell}}=\frac{O(1)}{T^{\ell}}
$$

Dimension-counting argument

Goal

An upper bound on $\operatorname{Pr}[|N(A)| \geq T]$, for $T=\Theta(q)$
Key points:
1

$$
\begin{aligned}
\operatorname{Pr}[|N(A)| \geq \Omega(q)] & =\operatorname{Pr}[\text { "dimension" of } N(A) \geq 1] \\
& \leq \operatorname{Pr}[\text { dimension of } N(A) \geq 1]
\end{aligned}
$$

2 Dimension- d variety behaves similarly to a set of size q^{d}. Example (pigeonhole principle):

$$
\begin{aligned}
V_{x} & =\{y:(x, y) \in V\} \\
U & =\left\{x: \operatorname{dim} V_{x} \geq d\right\}
\end{aligned}
$$

then

$$
\operatorname{dim} U \leq \operatorname{dim} V-d
$$

Dimension-counting argument

Goal

An upper bound on $\operatorname{Pr}[|N(A)| \geq T]$, for $T=\Theta(q)$
Key points:
1

$$
\begin{aligned}
\operatorname{Pr}[|N(A)| \geq \Omega(q)] & =\operatorname{Pr}[\text { "dimension" of } N(A) \geq 1] \\
& \leq \operatorname{Pr}[\text { dimension of } N(A) \geq 1]
\end{aligned}
$$

2 Dimension- d variety behaves similarly to a set of size q^{d}. Example (pigeonhole principle):

$$
\begin{aligned}
V_{x} & =\{y:(x, y) \in V\} \\
U & =\left\{x: \operatorname{dim} V_{x} \geq d\right\}
\end{aligned}
$$

then

$$
\operatorname{dim} U \leq \operatorname{dim} V-d
$$

The rest is details

\mathbb{F}_{q}^{s} looks like...

\mathbb{F}_{q}^{s} looks like. .
$\#$ (flat)

\mathbb{F}_{q}^{s} looks like...
 ... but it better be like

Theorem (B.)

The exist $K_{s, t}-$ free graphs with $c_{s} n^{2-1 / s}$ edges and $t \leq C^{s}$.

Another problem

Complete bipartite graphs:
$\operatorname{ex}\left(n, K_{s, t}\right) \sim n^{2-1 / t} \quad$ if $s \gg t$

Cycles:

$$
\operatorname{ex}\left(n, C_{2 \ell}\right) \leq c_{\ell} n^{1+1 / \ell} \quad \text { sharp for } \ell=2,3,5
$$

Another problem

Complete bipartite graphs:

$$
\operatorname{ex}\left(n, K_{s, t}\right) \sim n^{2-1 / t} \quad \text { if } s \gg t
$$

Cycles:

$$
\operatorname{ex}\left(n, C_{2 \ell}\right) \leq c_{\ell} n^{1+1 / \ell} \quad \text { sharp for } \ell=2,3,5
$$

"Proof":

1 Pretend that the $C_{2 t}$-free graph is d-regular.
2 Pretend that the graph is in fact $\left\{C_{3}, C_{4}, \ldots, C_{2 \ell}\right\}$-free

Another problem

Complete bipartite graphs:

$$
\operatorname{ex}\left(n, K_{s, t}\right) \sim n^{2-1 / t} \quad \text { if } s \gg t
$$

Cycles:

$$
\operatorname{ex}\left(n, C_{2 \ell}\right) \leq c_{\ell} n^{1+1 / \ell} \quad \text { sharp for } \ell=2,3,5
$$

"Proof":

1 Pretend that the $C_{2 t}$-free graph is d-regular.
2 Pretend that the graph is in fact $\left\{C_{3}, C_{4}, \ldots, C_{2 \ell}\right\}$-free

Another problem

Complete bipartite graphs:

$$
\operatorname{ex}\left(n, K_{s, t}\right) \sim n^{2-1 / t} \quad \text { if } s \gg t
$$

Cycles:

$$
\operatorname{ex}\left(n, C_{2 \ell}\right) \leq c_{\ell} n^{1+1 / \ell} \quad \text { sharp for } \ell=2,3,5
$$

"Proof":

1 Pretend that the $C_{2 t}$-free graph is d-regular.
2 Pretend that the graph is in fact $\left\{C_{3}, C_{4}, \ldots, C_{2 \ell}\right\}$-free

Actual proofs for cycles are messy

Theta Graphs

Theta graph $\Theta_{4,2}=C_{8}$

Theta graph $\Theta_{4,3}$

Upper bound (Faudree-Simonovits):

$$
\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \leq c_{\ell, t} n^{1+1 / \ell}
$$

Lower bound (Conlon):

$$
\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \geq \frac{1}{2} n^{1+1 / \ell} \quad \text { for } t \geq t(\ell)
$$

Conlon's construction

Lower bound (Conlon):

$$
\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \geq \frac{1}{2} n^{1+1 / \ell} \quad \text { for } t \geq t(\ell)
$$

Edges:

$x \sim y$ if
$f_{1}(x, y)=\cdots=f_{\ell-1}(x, y)=0$
Random f_{1}, \ldots, f_{ℓ}
Average degree is $n q^{-(\ell-1)}=q$

Conlon's construction

Lower bound (Conlon):

$$
\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \geq \frac{1}{2} n^{1+1 / \ell} \quad \text { for } t \geq t(\ell)
$$

Edges:

$x \sim y$ if
$f_{1}(x, y)=\cdots=f_{\ell-1}(x, y)=0$
Random f_{1}, \ldots, f_{ℓ}
Average degree is $n q^{-(\ell-1)}=q$

Path counting:

Path $x_{1} y_{1} x_{2} y_{2} \cdots$ is a solution to $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)=\cdots=0$

$$
\text { s.t. } x_{i} \neq x_{j} \& y_{i} \neq y_{j}
$$

Conlon's construction

Lower bound (Conlon):

$$
\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \geq \frac{1}{2} n^{1+1 / \ell} \quad \text { for } t \geq t(\ell)
$$

Edges:

$x \sim y$ if
$f_{1}(x, y)=\cdots=f_{\ell-1}(x, y)=0$
Random f_{1}, \ldots, f_{ℓ}
Average degree is $n q^{-(\ell-1)}=q$

Path counting:

Path $x_{1} y_{1} x_{2} y_{2} \cdots$ is a solution to $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)=\cdots=0$

$$
\text { s.t. } x_{i} \neq x_{j} \& y_{i} \neq y_{j}
$$

Key point: If U, V are varieties, then $U \backslash V$ has "dimension"

Theta Graphs, more carefully

Upper bound (B.-Tait):

For any ℓ, we have $\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \leq c_{\ell} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$
Lower bound (B.-Tait):
For odd ℓ, we have ex $\left(n, \Theta_{\ell, t}\right) \geq c_{\ell}^{\prime} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$

Theta Graphs, more carefully

Upper bound (B.-Tait):

For any ℓ, we have $\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \leq c_{\ell} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$
Lower bound (B.-Tait):
For odd ℓ, we have ex $\left(n, \Theta_{\ell, t}\right) \geq c_{\ell}^{\prime} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$

Blowing up Conlon:

Theta Graphs, more carefully

Upper bound (B.-Tait):

For any ℓ, we have $\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \leq c_{\ell} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$
Lower bound (B.-Tait):
For odd ℓ, we have ex $\left(n, \Theta_{\ell, t}\right) \geq c_{\ell}^{\prime} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$

Blowing up Conlon:

Theta Graphs, more carefully

Upper bound (B.-Tait):

For any ℓ, we have $\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \leq c_{\ell} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$
Lower bound (B.-Tait):
For odd ℓ, we have ex $\left(n, \Theta_{\ell, t}\right) \geq c_{\ell}^{\prime} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$

Blowing up Conlon:

Consider $\Theta_{\ell, T}$:
Endpoints x, y

Theta Graphs, more carefully

Upper bound (B.-Tait):
For any ℓ, we have $\operatorname{ex}\left(n, \Theta_{\ell, t}\right) \leq c_{\ell} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$
Lower bound (B.-Tait):
For odd ℓ, we have ex $\left(n, \Theta_{\ell, t}\right) \geq c_{\ell}^{\prime} t^{1-1 / \ell} \cdot n^{1+1 / \ell}$

Blowing up Conlon:

Consider $\Theta_{\ell, T}$:
Endpoints x, y
Key observation:
x, y are in different blobs
because ℓ is odd
Conclusion:
$\Theta_{\ell, T / c}$ in original

Turán exponents

Clonining the path thrice in two waysx:

Turán exponents

Clonining the path thrice in two waysx:

Generally:

T is a rooted tree (with several roots)
\mathcal{T}^{p} consists of all p-fold clones of T

Theorem (B.-Conlon)

For every rational number $r \in[1,2]$, there is a T such that

$$
\operatorname{ex}\left(n, \mathcal{T}^{p}\right)=\Theta\left(n^{r}\right)
$$

for all $p \geq p_{0}$.

References

Upper bounds for cycles and thetas:

Kovari-Sós-Turán, Bondy-Simonovits, Faudree-Simonovits, Verstraëte, Pikhurko, B.-Jiang, B. -Tait
$K_{s, t}$-free constructions:
Erdős-Rényi-Sós, Brown, Füredi, Kollár-Rónyai-Szabó, Alon-Rónyai-Szabó, B.-Blagojević-Karasev, Ball-Pepe, B.

Theta-free constructions:

Brown, Benson, Wenger, Füredi, Lazebnik-Ustimenko-Woldar, Conlon, Verstraëte-Williford, B.-Tait

Thanks to all!

This talk used ©-licensed graphics by
Andrew Doana (dice), Andrejs Kirma (head), Gregory Sujkowski (light bulbs), Oleksandr Panasovskyi (Seashell surface), emilegraphics (Möbius band), Creative Stall (moon)

