One-sided epsilon-approximants

Boris Bukh

May 2017

ع-approximants

Set $A \subset \mathbb{R}^{2}$ is an ε-approximant for set $P \subset \mathbb{R}^{2}$ w.r.t. to triangles if

$$
\forall \text { triangle } T \quad\left|\frac{|T \cap P|}{|P|}-\frac{|T \cap A|}{|A|}\right| \leq \varepsilon
$$

ع-approximants

Set $A \subset \mathbb{R}^{2}$ is an ε-approximant for set $P \subset \mathbb{R}^{2}$ w.r.t. to triangles if

$$
\forall \text { triangle } T \quad\left|\frac{|T \cap P|}{|P|}-\frac{|T \cap A|}{|A|}\right| \leq \varepsilon
$$

Theorem (VC'71)

For every $\varepsilon>0$ and every $P \subset \mathbb{R}^{2}$ there is a ε-approximant w.r.t. triangles of size $f(\varepsilon)$.

ع-approximants

Set $A \subset \mathbb{R}^{2}$ is an ε-approximant for set $P \subset \mathbb{R}^{2}$ w.r.t. to thingies if

For every $\varepsilon>0$ and every $P \subset \mathbb{R}^{2}$ there is a ε-approximant w.r.t. thingies of size $f(\varepsilon)$.

Simple shapes

Examples of simple shapes:

[Technical condition: bounded VC dimension.]

Simple shapes

Examples of simple shapes:

[Technical condition: bounded VC dimension.]

(3) Convex sets are not simple!

Convex sets are not simple

Theorem

There is no ε-approximant of size $f(\varepsilon)$ w.r.t. convex sets.

Proof.

Convex sets are not simple

Theorem

There is no ε-approximant of size $f(\varepsilon)$ w.r.t. convex sets.

Proof.

- n-gon
- Approx.

Convex sets are not simple

Theorem

There is no ε-approximant of size $f(\varepsilon)$ w.r.t. convex sets.

Proof.

- n-gon
- Approx.

Convex sets are not simple

Theorem

There is no ε-approximant of size $f(\varepsilon)$ w.r.t. convex sets.

Proof.

- n-gon
- Approx.

ع-nets

Set $N \subset \mathbb{R}^{2}$ is an ε-net for set $P \subset \mathbb{R}^{2}$ w.r.t. to family \mathcal{F} if

$$
\forall T \in \mathcal{F} \quad \frac{|T \cap P|}{|P|}>\varepsilon \Longrightarrow T \cap N \neq \emptyset
$$

Theorem (ABFK'92)

For every P there is an ε-net w.r.t. convex sets of size $f(\varepsilon)$.

One-sided ε-approximants

Set $A \subset \mathbb{R}^{2}$ is a one-sided ε-approximant for set $P \subset \mathbb{R}^{2}$ (w.r.t. to convex sets) if

$$
\forall \text { convex set } C \quad \frac{|C \cap P|}{|P|}-\frac{|C \cap A|}{|A|} \leq \varepsilon
$$

One-sided ε-approximants

Set $A \subset \mathbb{R}^{2}$ is a one-sided ε-approximant for set $P \subset \mathbb{R}^{2}$ (w.r.t. to convex sets) if

$$
\forall \text { convex set } C \quad \frac{|C \cap P|}{|P|}-\frac{|C \cap A|}{|A|} \leq \varepsilon
$$

ε-approximant \Longrightarrow one-sided ε-approximant \Longrightarrow-net

Theorem (B.-Nivasch)
For every P there is a one-sided ε-approximant of size $f(\varepsilon)$.

Proof outline

> Theorem (B.-Nivasch)
> For every P there is a one-sided ε-approximant of size $f(\varepsilon)$.

1 Replace P by a bounded-sized \hat{P}

2 Partition \hat{P} into large subsets S_{1}, S_{2}, \ldots in convex position

3 Explicit construction for sets in convex position

Proof outline

Theorem (B.-Nivasch)

For every P there is a one-sided ε-approximant of size $f(\varepsilon)$.
1 Replace P by a bounded-sized \hat{P}
How: regularity lemma for semialgebraic relations
Price: one-sided approx. for \hat{P} must be 'semi-algebraic'
2 Partition \hat{P} into large subsets S_{1}, S_{2}, \ldots in convex position

3 Explicit construction for sets in convex position

Proof outline

Theorem (B.-Nivasch)

For every P there is a one-sided ε-approximant of size $f(\varepsilon)$.
1 Replace P by a bounded-sized \hat{P}
How: regularity lemma for semialgebraic relations
Price: one-sided approx. for \hat{P} must be 'semi-algebraic'
2 Partition \hat{P} into large subsets S_{1}, S_{2}, \ldots in convex position How: greedily via Erdős-Szekeres
Price: poor bounds

3 Explicit construction for sets in convex position

Proof outline

Theorem (B.-Nivasch)

For every P there is a one-sided ε-approximant of size $f(\varepsilon)$.
1 Replace P by a bounded-sized \hat{P}
How: regularity lemma for semialgebraic relations
Price: one-sided approx. for \hat{P} must be 'semi-algebraic'
2 Partition \hat{P} into large subsets S_{1}, S_{2}, \ldots in convex position How: greedily via Erdős-Szekeres
Price: poor bounds

3 Explicit construction for sets in convex position
How: regularity lemma for words
Price: none

Proof outline: step I

1 Replace P by a bounded-sized \hat{P} How: regularity lemma for semialgebraic relations Price: one-sided approx. for \hat{P} must be 'semi-algebraic'

Theorem (FGLNP'12,FPS'15)

Every $P \subset \mathbb{R}^{2}$ can be equipartitioned into few mostly-regular parts.

Proof outline: step I

1 Replace P by a bounded-sized \hat{P}
How: regularity lemma for semialgebraic relations
Price: one-sided approx. for \hat{P} must be 'semi-algebraic'

Theorem (FGLNP'12,FPS'15)

Every $P \subset \mathbb{R}^{2}$ can be equipartitioned into few mostly-regular parts.

Mostly-regular $=$ at most ε fraction of the triples are irregular

'Semi-algebraicity'

-

- original P

'Semi-algebraicity'

- original P
new \hat{P}

'Semi-algebraicity'

- original P
- new \hat{P}

Point selection

Metaphorical drawing!

Proof outline: step 2

2 Partition \hat{P} into large subsets S_{1}, S_{2}, \ldots in convex position How: greedily via Erdős-Szekeres Price: poor bounds

Theorem (ES'35)

Every P of size m contains a convex subset of size $\frac{1}{2} \log m$.

Corollary

Every P of size m can be partitioned into convex subsets of size $\frac{1}{4} \log m$ and a small leftover.

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Basic bet:
() Win \$1
(5) Lose $\$ 1$
(5) Win $\$ 1$
($)$ Lose $\$ 1$

Betting scenario:
$\begin{array}{lllll}\text { Bet: } & 0 & (5) \\ \text { Outcome: ? ? ? ? ? }\end{array}$

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Basic bet:
() Win \$1
(5) Lose $\$ 1$
(5) Win $\$ 1$
($)$ Lose $\$ 1$

Betting scenario:
$\begin{array}{lllll}\text { Bet: } & 0 & (5) \\ \text { Outcome: ? ? ? ? ? }\end{array}$

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Basic bet:
() Win \$1
(5) Lose $\$ 1$
(5) Win $\$ 1$
($)$ Lose $\$ 1$

Betting scenario:
$\begin{array}{llllll}\text { Bet: } & (:) & (5) & (5) \\ \text { Outcome: } & 5) ~ ? ~ ? ~ ? ~ ? ~\end{array}$

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Basic bet:
() Win \$1
(5) Lose $\$ 1$
(5) Win $\$ 1$
($)$ Lose $\$ 1$

Betting scenario:
$\begin{array}{ll:l}\text { Bet: } & (5)(5) \\ \text { Outcome: (5) (5) ? ? ? }\end{array}$

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Basic bet:
() Win \$1
(5) Lose $\$ 1$
(5) Win $\$ 1$
($)$ Lose $\$ 1$

Betting scenario:
Bet: $:(5)(5)$
Outcome: (5) (5) $)$? ?

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Basic bet:
() Win \$1
(5) Lose $\$ 1$
(5) Win $\$ 1$
© Lose \$1

Betting scenario:

Proof outline: Step 3

3 Explicit construction for sets in convex position How: regularity lemma for words Price: none

Basic bet:
() Win \$1
or
(5) Win $\$ 1$
(5) Lose \$1
: Lose \$1

Betting scenario:

食 Coin is rigged!

Betting acainst a rigced coin

Coin flips:
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Betting against a ricged coin

Coin flips:

Approximation bet:

$$
\begin{array}{ll}
|\alpha-\beta| \leq \varepsilon & \text { Win } \$ 1 \\
|\alpha-\beta|>\varepsilon & \text { Lose } \$ 1
\end{array}
$$

Betting against a ricged coin

Coin flips:

Approximation bet (t intervals):

$$
\begin{array}{ll}
\forall i, j\left|\alpha_{i}-\alpha_{j}\right| \leq \varepsilon & \text { Win } \$ 1 \\
\exists i, j\left|\alpha_{i}-\alpha_{j}\right|>\varepsilon & \text { Lose } \$ 1
\end{array}
$$

Betting acainst a ricged coin

Coin flips:

Approximation bet (t intervals):

$$
\begin{array}{ll}
\forall i, j\left|\alpha_{i}-\alpha_{j}\right| \leq \varepsilon & \text { Win } \$ 1 \\
\exists i, j\left|\alpha_{i}-\alpha_{j}\right|>\varepsilon & \text { Lose } \$ 1
\end{array}
$$

Theorem (APP'13,FKT'14)

For every $\varepsilon>0$ and every t, one can win against a rigged coin!

Rigged coin: strategy

Theorem (APP'13,FKT'14)

For every $\varepsilon>0$ and every t, one can win against a rigged coin!

Strategy ($\mathrm{t}=2$):

Rigged coin: strategy

Theorem (APP'13,FKT'14)

For every $\varepsilon>0$ and every t, one can win against a rigged coin!

Strategy ($\mathrm{t}=2$):

Rigged coin: strategy

Theorem (APP'13,FKT'14)

For every $\varepsilon>0$ and every t, one can win against a rigged coin!

Strategy ($\mathrm{t}=2$):

It is over!

