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ε-approximants

Big and
very messy
point set P

=⇒ Small A

Set A ⊂ R2 is an
:::::::::::::
ε-approximant for set P ⊂ R2 w.r.t. to

::::::::
triangles if

∀ triangle T

∣∣∣∣ |T ∩ P|
|P|

− |T ∩ A|
|A|

∣∣∣∣ ≤ ε

Theorem (VC’71)

For every ε > 0 and every P ⊂ R2 there is a ε-approximant w.r.t.
triangles of size f (ε).
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=⇒ Small A
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For ‘sim
ple’ shapes



Simple shapes

Examples of simple shapes:

[Technical condition: bounded VC dimension.]

�Convex sets are not simple!
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Convex sets are not simple

Theorem

There is no ε-approximant of size f (ε) w.r.t. convex sets.

Proof.

n-gon

Approx.

Simplification due to Dömötör Pálvölgyi
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ε-nets

Big and
very messy
point set P

=⇒ Small A

Set N ⊂ R2 is an
::::
ε-net for set P ⊂ R2 w.r.t. to family F if

∀T ∈ F |T ∩ P|
|P|

> ε =⇒ T ∩ N 6= ∅

Theorem (ABFK’92)

For every P there is an ε-net w.r.t. convex sets of size f (ε).



One-sided ε-approximants

Big

set P
=⇒ Small A

Set A ⊂ R2 is a
:::::::::
one-sided

::::::::::::::
ε-approximant for set P ⊂ R2 (w.r.t. to

convex sets) if

∀ convex set C
|C ∩ P|
|P|

− |C ∩ A|
|A|

≤ ε

ε-net=⇒ one-sided ε-approximant =⇒ε-approximant

Theorem (B.–Nivasch)

For every P there is a one-sided ε-approximant of size f (ε).
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Proof outline

Theorem (B.–Nivasch)

For every P there is a one-sided ε-approximant of size f (ε).

1 Replace P by a bounded-sized P̂

How: regularity lemma for semialgebraic relations
Price: one-sided approx. for P̂ must be ‘semi-algebraic’

2 Partition P̂ into large subsets S1, S2, . . . in convex position

How: greedily via Erdős–Szekeres
Price: poor bounds

3 Explicit construction for sets in convex position

How: regularity lemma for words
Price: none
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Proof outline: step 1

1 Replace P by a bounded-sized P̂
How: regularity lemma for semialgebraic relations
Price: one-sided approx. for P̂ must be ‘semi-algebraic’

Theorem (FGLNP’12,FPS’15)

Every P ⊂ R2 can be equipartitioned into few mostly-regular parts.

" %

Mostly-regular = at most ε fraction of the triples are irregular
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‘Semi-algebraicity’

original P

new P̂
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Point selection

Metaphorical drawing!



Proof outline: step 2

2 Partition P̂ into large subsets S1, S2, . . . in convex position
How: greedily via Erdős–Szekeres
Price: poor bounds

Theorem (ES’35)

Every P of size m contains a convex subset of size 1
2 logm.

Corollary

Every P of size m can be partitioned into convex subsets of size
1
4 logm and a small leftover.



Proof outline: Step 3

3 Explicit construction for sets in convex position
How: regularity lemma for words
Price: none

Basic bet:

Win $1
5 Lose $1

or
5 Win $1

Lose $1

Betting scenario:

Bet: 5 5

Outcome: ? ? ? ? ?

�Coin is rigged!
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Betting against a rigged coin

Coin flips:

length m

αm heads βm headsα1m α2m · · · αtm

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Approximation bet:

|α− β| ≤ ε Win $1
|α− β| > ε Lose $1

Theorem (APP’13,FKT’14)

For every ε > 0 and every t, one can win against a rigged coin!
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Rigged coin: strategy
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It is over!


