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Theorem (VC'71)

For every € > 0 and every P C R? there is a e-approximant w.r.t.
triangles of size f(g).
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For every € > 0 and every P C R? there is a e-approximant w.r.t.
thingies of size f ().
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© Convex sets are not simple!



Convex sets are not simple

There is no e-approximant of size f(€) w.r.t. convex sets.
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Convex sets are not simple

There is no e-approximant of size f(€) w.r.t. convex sets.
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Simplification due to Démétor Pélvolgyi D
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Theorem (ABFK'92)

For every P there is an e-net w.r.t. convex sets of size f(e).
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Set A C R? is a one-sided s-approximant for set P C R? (w.r.t. to
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Theorem (B.—Nivasch)

V convex set C

For every P there is a one-sided c-approximant of size f(g).
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Theorem (B.—Nivasch)

For every P there is a one-sided e-approximant of size f(g).

Replace P by a bounded-sized P

Partition P into large subsets S1, Sy, ... in convex position

Explicit construction for sets in convex position
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Theorem (B.—Nivasch)

For every P there is a one-sided e-approximant of size f(g).
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Price: poor bounds

Explicit construction for sets in convex position
How: regularity lemma for words
Price: none
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Replace P by a bounded-sized P
How: regularity lemma for semialgebraic relations
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Every P C R? can be equipartitioned into few mostly-regular parts.



Proo# outline: step |

Replace P by a bounded-sized P
How: regularity lemma for semialgebraic relations
Price: one-sided approx. for P must be ‘semi-algebraic’

Theorem (FGLNP'12,FPS'15)

Every P C R? can be equipartitioned into few mostly-regular parts.

v X

Mostly-regular = at most ¢ fraction of the triples are irregular
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Point selection

Metaphorical drawing!



Proo# outline: step 2

Partition P into large subsets S1, S5,... in convex position
How: greedily via Erdés—Szekeres
Price: poor bounds

Theorem (ES’'35)

Every P of size m contains a convex subset of size % log m.

Corollary

Every P of size m can be partitioned into convex subsets of size
% log m and a small leftover.
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Proo#$ outline: Step 3

Explicit construction for sets in convex position
How: regularity lemma for words

Price: none
Basic bet:
® Win $1 or ® Win $1
® Lose $1 ® Lose $1

Betting scenario:
Bet: OGO ®
Outcome: ® O O ® 7



Proof outline: Step 3

Explicit construction for sets in convex position
How: regularity lemma for words

Price: none
Basic bet:
® Win $1 o ® Win $1
® Lose $1 ® Lose $1

Betting scenario:

Bet: QIOIOJSXE),
Outcome: ® OO B ®

@ Coin is rigged!
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Bettina aaainst a ricaaed coin

Coin flips:

length m
AP ASNR

r2 @22 Y2 9 2 9 7 2
arm Qom atm

Approximation bet (t intervals):

Vi,jlai —aj] <& Win $1
Ji,jlai —aj| > e Lose $1

Theorem (APP'13,FKT'14)

For every ¢ > 0 and every t, one can win against a rigged coin!
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H is over!



