# Sharp Bounds on the finite field Kakeya problem 

 or, Taming hedgehogs with polynomials

## Boris Bukh

Carnecie Mellon University June 16,2022

Joint w/Ting-Wei Chao
(w) $4 \mathrm{~N}^{202}$

Kakeya problem in $\mathbb{R}^{n}$
Kakeya 1917
Find a figure of the least area on which a secment of lencth 1 can Be turned $360^{\circ}$ By a continuous movement.

Besicovitch 1928
There exist such sets of arBitrarily small area.

$1 \mathrm{lb} / \mathrm{sin} / 2022$
Kakeya problem in $\mathbb{R}^{n}$
Kakeya 1917
Find a figure of the least area on which a segment of length 1 can Be turned $360^{\circ}$ by a continuous movement.

Besicovitch 1928
There exist such sets of arBitrarily small area.


Kakeya set in $\mathbb{R}^{n}$
A set containing a line segment in every direction
(w) $3 \mathrm{~N}^{12} 1$

Kakeya problem in $\mathbb{R}^{n}$
Kakeya 1917
Find a figure of the least area on which a segment of length 1 can Be turned $360^{\circ}$ by a continuous movement.

Besicovitch 1928
There exist such sets of arBitrarily small area.

Conjecture:

$$
\operatorname{dim}(\text { Kakeya se } t)=n \text { ? }
$$



Best known:
$\operatorname{dim}($ Kakeya set $)>c n$
for some $c<1$
Kakeya set in $\mathbb{R}^{n}$
A set containing a line segment in every direction
$w 1400^{202}$
Finite fields
Line
A set of the form $\left\{a+b t: t \in \mathbb{F}_{q}\right\}$
Kakeya set
A set contain a line in every direction
$m$-dimensional
Set of about $q^{m}$ points
Wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
$(1) 300^{2} 02$
Finite fields
Line
A set of the form $\left\{a+b t: t \in \mathbb{F}_{q}\right\}$
Kakeya set
A set contain a line in every direction
$m$-dimensional
Set of about $q^{m}$ points
Wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dimension 2 is easy
First line $q$ points
$(1) 300^{2} 02$
Finite fields

Line
A set of the form $\left\{a+b t: t \in \mathbb{F}_{q}\right\}$
Kakeya set
A set contain a line in every direction
$m$-dimensional
Set of about $q^{m}$ points
Wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dimension 2 is easy
First line $\quad q$ points
Second line $q-1$ points
$(1) 3 x^{2} 20^{2}$
Finite fields

Line
A set of the form $\left\{a+b t: t \in \mathbb{F}_{q}\right\}$
Kakeya set
A set contain a line in every direction
$m$-dimensional
Set of about $q^{m}$ points
Wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dimension 2 is easy
First line $\quad q$ points Second line $q-1$ points

W) $3 \mathrm{~N}^{12} 02$

Bounds on Kakeya sets
wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dir 2009
At least $\Omega\left(q^{n-1}\right)$ points.

Bounds on Kakeya sets
Wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dir ( 1 Alon, Oberlin, Tao) 2009
Yes, with $c_{n}=1 / n!$.
$(16350202$
Bounds on Kakeya sets
wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dir ( 1 Alone, Oberlin, Tao) 2009
Yes, with $c_{n}=1 / n!$.
Saraf, Sudan 2008
Yes, with $c_{n}=1 / 2.6^{n}$.

## Bounds on Kakeya sets

Wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dvir ( ( Alon. OBerlin Tao) 2009 Yes, with $c_{n}=1 / n!$.

Saraf, Sudan 2008 Yes, with $c_{n}=1 / 2.6^{n}$.

Dvir Kopparty, Saraf, Sudan 2013 Yes, with $c_{n}=1 / 2^{n}$.
Not for $c_{n}>1 / 2^{n-1}$.
$(16) 3 \mathrm{~N}^{2} \mathrm{O}^{2}$
Bounds on Kakeya sets
Wolff 1999
Does every Kakeya set in $\mathbb{F}_{q}^{n}$ contain $c_{n} q^{n}$ points?
Dir ( 1 Alone, OBerlin, TaO) 2009
Yes, with $c_{n}=1 / n!$.
Saraf, Sudan 2008
Yes, with $c_{n}=1 / 2.6^{n}$.
Dir, Kopparty, Saraf, Sudan 2013
Yes, with $c_{n}=1 / 2^{n}$.
Not for $c_{n}>1 / 2^{n-1}$.
The ( $B$-Chaos)
Yes, with $c_{n}=2^{n-1}$.
$(w) 0^{2} 0^{2}$
Dir's argument
Every Kakeya set $K \subseteq \mathbb{F}_{q}^{n}$ has at least $\binom{q+n-1}{n}$ elements.
Proof
(1) Find polynomial $f$ vanishing on $K$

- $f(p)=0$ is a linear equation on $f$
- $\operatorname{dim}$ (Decreed polynomials) $=\binom{d+n}{n}$
- Take $d=q$ - 1

$w 1450202$
Dir's argument
Every Kakeya set $K \subseteq \mathbb{F}_{q}^{n}$ has at least $\binom{q+n-1}{n}$ elements.
Proof
(1) Find polynomial $f$ vanishing on $K$
- $f(p)=0$ is a linear equation on $f$
- $\operatorname{dim}($ Degree-d polynomials $)=\binom{d+n}{n}$
- Take $d=q-1$

$\nu \ell=\left\{a+b t: t \in \mathbb{F}_{q}\right\}$
$-f(a+b t)=0$ on $\mathbb{F}_{q}$
- $f(a+b t)$ is zero poly.
$-\left[t^{\operatorname{deg} f}\right] f(a+b t)=0$
$w 1450202$
Dir's argument
Every Kakeya set $K \subseteq \mathbb{F}_{q}^{n}$ has at least $\binom{q+n-1}{n}$ elements.
Proof
(1) Find polynomial $f$ vanishing on $K$
- $f(p)=0$ is a linear equation on $f$
- $\operatorname{dim}($ Decree- $d$ polynomials $)=\binom{d+n}{n}$
- Take $d=q-1$


$$
\begin{aligned}
b_{\infty} & >\ell=\left\{a+b t: t \in \mathbb{F}_{q}\right\} \\
& >f(a+b t)=0 \text { on } \mathbb{F}_{q} \\
& >f(a+b t) \text { is zero poly } \\
& \left.>t^{\operatorname{deg} f}\right] f(a+b t)=0 \\
& \uplus f\left(b_{\infty}\right)=0
\end{aligned}
$$

## Dvir's arcument

Every Kakeya set $K \subseteq \mathbb{F}_{q}^{n}$ has at least $\binom{q+n-1}{n}$ elements.
Proof
(1) $\operatorname{deg} f \leq q-1$ vanishes on $K$
(2) $\forall \vec{b} f\left(b_{x}\right)=0$
(3)


## Dvir's arkument

Every Kakeya set $K \subseteq \mathbb{F}_{q}^{n}$ has at least $\binom{q+n-1}{n}$ elements.
Proof
(1) $\operatorname{deg} f \leq q-1$ vanishes on $K$
(2) $\forall \vec{b} f\left(b_{x}\right)=0$
(3)

(4) $f=0$ on $\mathbb{P}^{n-1}$
(5) $f_{d}=0$

## Dvir's arkument

Every Kakeya set $K \subseteq \mathbb{F}_{q}^{n}$ has at least $\binom{q+n-1}{n}$ elements.
Proof
(1) $\operatorname{deg} f \leq q-1$ vanishes on $K$
(2) $\forall \vec{b} f\left(b_{x}\right)=0$
(3)

(4) $f=0$ on $\mathbb{p}^{n-1}$
$\longleftarrow q^{n-1}$ conditions
(5) $f_{d}=0$
$\leftarrow\binom{q+n-1}{n-1}$ coefficients

## Our arcument for $n=3$

Every Kakeya set $K \subseteq \mathbb{F}_{q}^{3}$ has at least $\frac{1}{4}\left(q^{3}+q^{2}\right)$ elements.
Proof
(1) Better space of polynomials

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \alpha_{1}+\alpha_{2}+\alpha_{3}<2 q \text { and } \alpha_{1}, \alpha_{2}<q\right\} \\
& V \stackrel{\text { def }}{=}\left\{\sum_{\alpha \in A} c_{\alpha} x^{\alpha}: c_{\alpha} \in \mathbb{F}_{q}\right\} .
\end{aligned}
$$

## Our arcument for $n=3$

Every Kakeya set $K \subseteq \mathbb{F}_{q}^{3}$ has at least $\frac{1}{4}\left(q^{3}+q^{2}\right)$ elements.
Proof
(1) Better space of polynomials

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \alpha_{1}+\alpha_{2}+\alpha_{3}<2 q \text { and } \alpha_{1}, \alpha_{2}<q\right\} \\
& V \stackrel{\text { def }}{=}\left\{\sum_{\alpha \in A} c_{\alpha} x^{\alpha}: c_{\alpha} \in \mathbb{F}_{q}\right\} .
\end{aligned}
$$

(2) Different vanishing condition

$$
\left\{\begin{aligned}
f(p) & =0 \\
\nabla f(p) & =0
\end{aligned} \quad \text { for every } p \in K .\right.
$$

## Our arcument for $n=3$

Every Kakeya set $K \subseteq \mathbb{F}_{q}^{3}$ has at least $\frac{1}{4}\left(q^{3}+q^{2}\right)$ elements.
Proof
(1) Better space of polynomials

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \alpha_{1}+\alpha_{2}+\alpha_{3}<2 q \text { and } \alpha_{1}, \alpha_{2}<q\right\} \\
& V \stackrel{\operatorname{def}}{=}\left\{\sum_{\alpha \in A} c_{\alpha} \alpha^{\alpha}: c_{\alpha} \in \mathbb{F}_{q}\right\} . \quad \operatorname{dim} V=q^{3}+q^{2}
\end{aligned}
$$

(2) Different vanishina condition

$$
\left\{\begin{aligned}
f(p) & =0 \\
\nabla f(p) & =0
\end{aligned} \quad \text { for every } p \in K .\right.
$$

4 conditions per point \|

$$
4|K| \geq q^{3}+q^{2}
$$

## Our arcument for $n=3$

(1) Better polynomial

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \alpha_{1}+\alpha_{2}+\alpha_{3}<2 q \text { and } \alpha_{1}, \alpha_{2}<q\right\} \\
& f=\sum_{\alpha \in A} c_{\alpha} x^{\alpha}
\end{aligned}
$$

(2) $f(p)=\nabla f(p)=0$ for every $p \in K$

## Our arcument for $n=3$

(1) Better polynomial

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \alpha_{1}+\alpha_{2}+\alpha_{3}<2 q \text { and } \alpha_{1}, \alpha_{2}<q\right\} \\
& f=\sum_{\alpha \in A} c_{\alpha} x^{\alpha}
\end{aligned}
$$

(2) $f(p)=\nabla f(p)=0$ for every $p \in K$

$$
\text { (3) } \begin{aligned}
& \vee f(a+b t)=0 \text { on } \mathbb{E}_{q} \\
& \vee f^{\prime}(a+b t)=0 \text { on } \mathbb{E}_{q} \\
& \vee f(a+b t) \text { is zero poly. } \\
& >f\left(b_{\infty}\right)=0
\end{aligned}
$$

## Our arcument for $n=3$

(1) Better polynomial

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \alpha_{1}+\alpha_{2}+\alpha_{3}<2 q \text { and } \alpha_{1}, \alpha_{2}<q\right\} \\
& f=\sum_{\alpha \in A} c_{\alpha} x^{\alpha}
\end{aligned}
$$

(2) $f(p)=\nabla f(p)=0$ for every $p \in K$

$$
\text { (3) } \begin{aligned}
\text { B }_{\infty} & \vee \operatorname{deg} f(a+b t)<2 q \\
& \vee f(a+b t)=0 \text { on } \mathbb{E}_{q} \\
& \vee f^{\prime}(a+b t)=0 \text { on } \mathbb{E}_{q} \\
& \vee f(a+b t) \text { is zero poly. } \\
& >f\left(b_{\infty}\right)=0
\end{aligned}
$$

(4) $g(x, y)=f_{d}(x, y, 1)$ vanishes

## Our arcument, general

- The $n=3$ does NOT generalize
- Vanishing order to $\rightarrow \infty$

DKSS 2013

- The conditions depend on $p$ and $\ell$

Zhang 2020

## Our arcument, general

- The $n=3$ does NOT Generalize
- Vanishina order to $\rightarrow \infty$

DKSS 2013

- The conditions depend on $p$ and $\ell$

Zhang 2020

$\nabla \ell=\left\{a+b t: t \in \mathbb{F}_{q}\right\}$
$\bullet g=D^{\alpha} f$ with $|\alpha|<r$
$-\operatorname{ord} g(a+b t) \geq s$ everywhere on $\mathbb{F}_{q}$

## Our argument, general

- The $n=3$ does NOT generalize
- Vanishing order to $\rightarrow \infty$

DK SS 2013

- The conditions depend on $p$ and $\ell$

Zhang 2020

No idea why it is sharp!

Lower-order terms

Thm (B-Chao)
Every Kakeya set in $\mathbb{F}_{q}^{n}$ satisfies $|K| \geq 2^{-n+1} q^{n}\left(1+\frac{n-1}{2 q}\right)$.

Lower-order terms

Thm (B-Chao)
Every Kakeya set in $\mathbb{F}_{q}^{n}$ satisfies $|K| \geq 2^{-n+1} q^{n}\left(1+\frac{n-1}{2 q}\right)$.
Construction
There are Kakeya sets in $\mathbb{F}_{q}^{n}$ of size $2^{-n+1} q^{n}\left(1+\frac{n+1}{q}\right)$.
$(6) 351202$
Lower-order terms

Thu (B-Chao)
Every Kakeya set in $\mathbb{F}_{q}^{n}$ satisfies $|K| \geq 2^{-n+1} q^{n}\left(1+\frac{n-1}{2 q}\right)$.
Construction
There are Kakeya sets in $\mathbb{F}_{q}^{n}$ of size $2^{-n+1} q^{n}\left(1+\frac{n+1}{q}\right)$.


