Sharp Bounds on the finite field Kakeya problem

or, Taming hedgehogs with polynomials

Boris Bukh

Carnegie Mellon University

June 16, 2022

Joint w/Ting-Wei Chao

Kakeya problem in \mathbb{R}^n

Kakeya 1917

Find a figure of the least area on which a segment of length 1 can be turned 360° by a continuous movement.

Besicovitch 1928

There exist such sets of arbitrarily small area.

Kakeya problem in \mathbb{R}^n

Kakeya 1917

Find a figure of the least area on which a segment of length 1 can be turned 360° by a continuous movement.

Besicovitch 1928

There exist such sets of arbitrarily small area.

Kakeya set in \mathbb{R}^n

A set containing a line segment in every direction

Kakeya problem in \mathbb{R}^n

Kakeya 1917

Find a figure of the least area on which a segment of length 1 can be turned 360° by a continuous movement.

Besicovitch 1928

There exist such sets of arbitrarily small area.

Conjecture:

 $\dim(Kakeya set) = n?$

Best known: $\dim(\mathsf{Kakeya} \ \mathsf{set}) > \mathit{cn}$ for some $\mathit{c} < 1$

Kakeya set in \mathbb{R}^n

A set containing a line segment in every direction

Finite fields

Line A set of the form $\{a + bt : t \in \mathbb{F}_q\}$ Kakeya set A set containg a line in every direction <u>m-dimensional</u> Set of about q^m points

Wolff 1999 Does every Kakeya set in \mathbb{F}_a^n contain $c_n q^n$ points?

Finite fields

Line A set of the form $\{a + bt : t \in \mathbb{F}_q\}$ Kakeya set A set containg a line in every direction *m*-dimensional Set of about q^m points Wolff 1999 Does every Kakeya set in \mathbb{F}_{a}^{n} contain $c_{n}q^{n}$ points? Dimension 2 is easy First line gpoints

161 Jun 2022 Finite fields

Line A set of the form $\{a + bt : t \in \mathbb{F}_{q}\}$ Kakeya set A set containg a line in every direction *m*-dimensional Set of about q^m points Wolff 1999 Does every Kakeya set in \mathbb{F}_{q}^{n} contain $c_{n}q^{n}$ points? Dimension 2 is easy First line q points Second line q-1 points

Finite fields

Line A set of the form $\{a + bt : t \in \mathbb{F}_{q}\}$ Kakeya set A set containg a line in every direction *m*-dimensional Set of about q^m points Wolff 1999 Does every Kakeya set in \mathbb{F}_{q}^{n} contain $c_{n}q^{n}$ points? Dimension 2 is easy First line q points Second line q-1 points $q+(q-1)+\cdots+1=\binom{q+1}{2}$

Wolff 1999 Does every Kakeya set in \mathbb{F}_q^n contain $c_n q^n$ points? Dvir 2009 At least $\Omega(q^{n-1})$ points.

Wolff 1999 Does every Kakeya set in \mathbb{F}_q^n contain $c_n q^n$ points? Dvir (# Alon, Oberlin, Tao) 2009 Yes, with $c_n = 1/n!$.

Wolff 1999 Does every Kakeya set in \mathbb{F}_q^n contain $c_n q^n$ points? Dvir (# Alon, Oberlin, Tao) 2009 Yes, with $c_n = 1/n!$. Saraf, Sudan 2008 Yes, with $c_n = 1/2.6^n$.

Wolff 1999 Does every Kakeya set in \mathbb{F}_q^n contain $c_n q^n$ points? Dvir (‡ Alon, Oberlin, Tao) 2009 Yes, with $c_n = 1/n!$.

Saraf, Sudan 2008 Yes, with $c_n = 1/2.6^n$.

Dvir, Kopparty, Saraf, Sudan 2013 Yes, with $c_n = 1/2^n$. Not for $c_n > 1/2^{n-1}$.

Wolff 1999 Does every Kakeya set in \mathbb{F}_q^n contain $c_n q^n$ points? Dvir (# Alon, Oberlin, Tao) 2009 Yes, with $c_n = 1/n!$.

Saraf, Sudan 2008 Yes, with $c_n = 1/2.6^n$.

Dvir, Kopparty, Saraf, Sudan 2013 Yes, with $c_n = 1/2^n$. Not for $c_n > 1/2^{n-1}$.

Thm. (B.-Chao) Yes, with $c_n = 2^{n-1}$.

Every Kakeya set $K \subseteq \mathbb{F}_q^n$ has at least $\binom{q+n-1}{n}$ elements. <u>Proof</u>

(1) Find polynomial f vanishing on K

- f(p) = 0 is a linear equation on f
- dim(Degree-d polynomials) = $\binom{d+n}{n}$

- Take d = q - 1

Every Kakeya set $K \subseteq \mathbb{F}_q^n$ has at least $\binom{q+n-1}{n}$ elements. <u>Proof</u>

(1) Find polynomial f vanishing on K

- f(p) = 0 is a linear equation on f
- dim(Degree-d polynomials) = $\binom{d+n}{n}$
- Take d = q 1

 $\mathbf{E} \ell = \{a + bt : t \in \mathbb{F}_q\}$ $\mathbf{E} f(a + bt) = 0 \text{ on } \mathbb{F}_q$ $\mathbf{E} f(a + bt) \text{ is zero poly.}$ $\mathbf{E} [t^{\deg f}] f(a + bt) = 0$

Every Kakeya set $K \subseteq \mathbb{F}_q^n$ has at least $\binom{q+n-1}{n}$ elements. <u>Proof</u>

(1) Find polynomial f vanishing on K

- f(p) = 0 is a linear equation on f
- dim(Degree-d polynomials) = $\binom{d+n}{n}$
- Take d = q 1

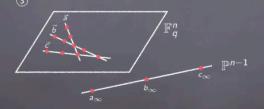
 $\mathbf{P} \ell = \{a + bt : t \in \mathbb{F}_q\}$ $\mathbf{P} f(a + bt) = 0 \text{ on } \mathbb{F}_q$ $\mathbf{P} f(a + bt) \text{ is zero poly.}$ $\mathbf{P} [t^{\deg f}] f(a + bt) = 0$

 $\stackrel{\text{\tiny{$1$}$}}{\Longrightarrow} f(b_\infty) = 0$

Every Kakeya set $K \subseteq \mathbb{F}_q^n$ has at least $\binom{q+n-1}{n}$ elements.

Proof

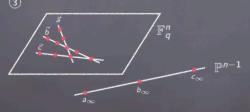
- (1) deg $f \leq q-1$ vanishes on K
- $() \forall \vec{b} f(b_{\infty}) = 0$



Every Kakeya set $K\subseteq \mathbb{F}_q^n$ has at least $\binom{q+n-1}{n}$ elements.

Proof

- (1) deg $f \leq q 1$ vanishes on K
- $(2 \ \forall \vec{b} \ f(b_{\infty}) = 0)$

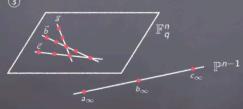


(a) f = 0 on \mathbb{P}^{n-1} (b) $f_d = 0$

Every Kakeya set $K\subseteq \mathbb{F}_q^n$ has at least $\binom{q+n-1}{n}$ elements.

Proof

- (1) deg $f \leq q 1$ vanishes on K
- $(2 \ \forall \vec{b} \ f(b_{\infty}) = 0)$



(4) f = 0 on \mathbb{P}^{n-1} (5) $f_d = 0$ $\longleftarrow q^{n-1}$ conditions $\longleftarrow \begin{pmatrix} q+n-1\\ n-1 \end{pmatrix}$ coefficients

Our argument for n=3

Every Kakeya set $K\subseteq \mathbb{F}_q^3$ has at least $rac{1}{4}(q^3+q^2)$ elements.

① Better space of polynomials

$$egin{aligned} & \mathcal{A} \stackrel{ ext{def}}{=} \{ (lpha_1, lpha_2, lpha_3) : lpha_1 + lpha_2 + lpha_3 < 2q ext{ and } lpha_1, lpha_2 < q \} \ & \mathcal{V} \stackrel{ ext{def}}{=} \Big\{ \sum_{lpha \in \mathcal{A}} c_lpha x^lpha : c_lpha \in \mathbb{F}_q \Big\}. \end{aligned}$$

Our argument for n = 3

Every Kakeya set $K\subseteq \mathbb{F}_q^3$ has at least $rac{1}{4}(q^3+q^2)$ elements.

① Better space of polynomials

$$egin{aligned} & \mathcal{A} \stackrel{ ext{def}}{=} \{ (lpha_1, lpha_2, lpha_3) : lpha_1 + lpha_2 + lpha_3 < 2q ext{ and } lpha_1, lpha_2 < q \} \ & \mathcal{V} \stackrel{ ext{def}}{=} \Big\{ \sum_{lpha \in \mathcal{A}} c_lpha x^lpha : c_lpha \in \mathbb{F}_q \Big\}. \end{aligned}$$

② Different vanishing condition

$$\begin{cases} f(p) = 0 \\ \nabla f(p) = 0 \end{cases} \quad \text{for every } p \in K.$$

\sim Our argument for n=3

Every Kakeya set $K \subseteq \mathbb{F}_q^3$ has at least $\frac{1}{4}(q^3+q^2)$ elements. <u>Proof</u>

1) Better space of polynomials

 $egin{aligned} &A \stackrel{ ext{def}}{=} \{(lpha_1, lpha_2, \overline{lpha_3}) : lpha_1 + lpha_2 + lpha_3 < 2q ext{ and } lpha_1, lpha_2 < q\} \ &V \stackrel{ ext{def}}{=} igg\{ \sum_{lpha \in A} c_lpha x^lpha : c_lpha \in \mathbb{F}_q igg\}. \ & ext{ dim } V = q^3 + q^2 \end{aligned}$

② Different vanishing condition

&

 $\begin{cases} f(p) = 0 \\ \nabla f(p) = 0 \end{cases} \quad \text{for every } p \in K.$

4 conditions per point \downarrow $4|K| > a^3 + a^2$

Our argument for n = 3

1 Better polynomial

 $egin{aligned} &A \stackrel{ ext{def}}{=} \{(lpha_1, lpha_2, lpha_3): lpha_1 + lpha_2 + lpha_3 < 2q ext{ and } lpha_1, lpha_2 < q\} \ &f = \sum_{lpha \in \mathcal{A}} c_lpha x^lpha \end{aligned}$

(2) $f(p) = \nabla f(p) = 0$ for every $p \in K$

"Our argument for n=3

1) Better polynomial

 $egin{aligned} &\mathcal{A} \stackrel{ ext{def}}{=} \{ (lpha_1, lpha_2, lpha_3) : lpha_1 + lpha_2 + lpha_3 < 2q ext{ and } lpha_1, lpha_2 < q \} \ &f = \sum_{lpha \in \mathcal{A}} c_lpha x^lpha \end{aligned}$

(2) $f(p) = \nabla f(p) = 0$ for every $p \in K$

- \blacktriangleright deg f(a + bt) < 2q
- ► f(a+bt) = 0 on \mathbb{F}_q
- ► f'(a+bt) = 0 on \mathbb{F}_q
- \blacktriangleright f(a+bt) is zero poly.

► $f(b_{\infty}) = 0$

"Our argument for n=3

1) Better polynomial

 $egin{aligned} &\mathcal{A} \stackrel{ ext{def}}{=} \{ (lpha_1, lpha_2, lpha_3) : lpha_1 + lpha_2 + lpha_3 < 2q ext{ and } lpha_1, lpha_2 < q \} \ &f = \sum_{lpha \in \mathcal{A}} c_lpha x^lpha \end{aligned}$

 $\bigcirc f(p) = \nabla f(p) = 0$ for every $p \in K$

- $\blacktriangleright_{b_{\infty}} \rightarrow \deg f(a+bt) < 2q$
 - ► f(a+bt) = 0 on \mathbb{F}_q
 - $\blacktriangleright f'(a+bt)=0$ on \mathbb{F}_q
 - \blacktriangleright f(a+bt) is zero poly.

$$\blacktriangleright f(b_{\infty}) = 0$$

(4) $g(x, y) = f_d(x, y, 1)$ vanishes

"Our argument, general

- The n = 3 does NOT generalize
- Vanishing order to $\rightarrow \infty$

DKSS 2013

- The conditions depend on p and ℓ Zhang 2020

"Our argument, general

- The n = 3 does NOT generalize
- Vanishing order to $\rightarrow \infty$

DKSS 2013

- The conditions depend on p and ℓ Zhang 2020

$$\begin{split} \blacktriangleright & \ell = \{a + bt : t \in \mathbb{F}_q\} \\ \blacktriangleright & g = D^{\alpha}f \text{ with } |\alpha| < r \\ \blacktriangleright & \text{ord } g(a + bt) \geq s \\ & \text{everywhere on } \mathbb{F}_q \end{split}$$

"Our argument, general

- The n = 3 does NOT generalize
- Vanishing order to $\rightarrow \infty$

DKSS 2013

- The conditions depend on p and ℓ Zhang 2020

No idea why it is sharp!

"Lower-order terms

Thm. (B-Chao) Every Kakeya set in \mathbb{F}_q^n satisfies $|K| \ge 2^{-n+1}q^n(1+\frac{n-1}{2q})$.

"Lower-order terms

Thm. (B.-Chao)

Every Kakeya set in \mathbb{F}_q^n satisfies $|K| \ge 2^{-n+1}q^n(1+\frac{n-1}{2q})$.

Construction There are Kakeya sets in \mathbb{F}_a^n of size $2^{-n+1}q^n(1+\frac{n+1}{a})$.

"Lower-order terms

Thm. (B-Chao) Every Kakeya set in \mathbb{F}_{q}^{n} satisfies $|K| \geq 2^{-n+1}q^{n}(1+\frac{n-1}{2q})$.

Construction There are Kakeya sets in \mathbb{F}_a^n of size $2^{-n+1}q^n(1+\frac{n+1}{a})$.

But you said 'sharp

