Geometric selection theorems

Boris Bukh joint with Jiří Matoušek and Gabriel Nivasch

April 2009

Two theorems

Theorem (Rado'46)

For any set P of n points in \mathbb{R}^d there is a point p (centerpoint) such that $|H \cap P| \ge \frac{1}{d+1}|P|$ for every closed halfspace containing p.

Theorem (Vapnik–Chervonenkis'71)

For any set P of n points in \mathbb{R}^2 there is a set N (net) of

$$\frac{200}{\epsilon^2}\log\frac{200}{\epsilon}$$

points such that

$$\left| \frac{|T \cap P|}{|P|} - \frac{|T \cap N|}{|N|} \right| \le \epsilon$$
 for every triangle T .

Two theorems and more

Theorem (Rado'46)

For any set P of n points in \mathbb{R}^d there is a point p (centerpoint) such that $|H \cap P| \ge \frac{1}{d+1}|P|$ for every closed halfspace containing p.

Theorem (Haussler-Welzl'87)

For any set P of n points in \mathbb{R}^2 there is a set N (net) of

$$\frac{200}{\epsilon}\log\frac{200}{\epsilon}$$

points such that

$$\frac{|T \cap P|}{|P|} \ge \epsilon \implies T \cap N \ne \emptyset$$
 for every triangle T .

Introduction

Basic problem

Let S be a large set of points in \mathbb{R}^d . Approximate S by a small set N that behaves similarly to S.

Definition

Suppose $S \subset \mathbb{R}^d$ and \mathcal{F} is a family of sets in \mathbb{R}^d . Then $N \subset S$ is an ϵ -net for S (with respect to \mathcal{F}) if N intersects every $F \in \mathcal{F}$ whenever $|F \cap S| \geq \epsilon |S|$.

Wonders of VC-dimension...

Definition

Vapnik-Chervonenkis dimension (abbreviated VC dimension) of a set family $\mathcal{F} \subset 2^X$ is at least d if there is |Y| = d + 1, for which $\mathcal{F}|_Y := \{F \cap Y : F \in \mathcal{F}\}$ is the powerset 2^Y .

Theorem

If the family $\mathcal F$ has finite VC dimension, then for every S there is always an 1/r-net whose size $cr \log r$. (No matter how large S is!)

Fact

Family of all n-face polyhedra in \mathbb{R}^d has finite VC dimension. More generally, the family of semialgebraic sets of complexity n has finite VC dimension.

Fact

The family of all the convex sets has infinite VC dimension. There are no small ϵ -nets for points in convex position.

Fact

The family of all the convex sets has infinite VC dimension. There are no small ϵ -nets for points in convex position.

Definition

Fact

The family of all the convex sets has infinite VC dimension. There are no small ϵ -nets for points in convex position.

Definition

Fact

The family of all the convex sets has infinite VC dimension. There are no small ϵ -nets for points in convex position.

Definition

Fact

The family of all the convex sets has infinite VC dimension. There are no small ϵ -nets for points in convex position.

Definition

Fact

The family of all the convex sets has infinite VC dimension. There are no small ϵ -nets for points in convex

P^c Definition

Fact

The family of all the convex sets has infinite VC dimension. There are no small contact for maintain

Definition

Fact

The family of all the convex sets has infinite VC dimension. There are no

Sr Definition

Fact

The family of all the convex sets has

¹⁷ Definition

Delilitio

Fact

Definition

Definition

Definition

Definition

Definition

Weak ϵ -nets

Definition

- Bárány, Füredi, Lovász'90: There are weak 1/r-nets of size r^{1026} in \mathbb{R}^2 .
- Alon, Bárány, Füredi, Kleitman'92: There are weak 1/r-nets of size r^2 in \mathbb{R}^2 , and of size $r^{d+1-\epsilon(d)}$ in \mathbb{R}^d , $d \ge 3$.
- Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, Welzl'95: There are weak 1/r-nets of size $r^d \log^{c(d)} r$ in \mathbb{R}^d .
- Matoušek, Wagner'04: There are weak 1/r-nets of size $r^d \log^{c(d)} r$ in \mathbb{R}^d , with smaller c(d).

Weak ϵ -nets

Definition

- **Triviality**: There is no weak 1/r-net of size less than r.
- Bárány, Füredi, Lovász'90: There are weak 1/r-nets of size r^{1026} in \mathbb{R}^2 .
- Alon, Bárány, Füredi, Kleitman'92: There are weak 1/r-nets of size r^2 in \mathbb{R}^2 , and of size $r^{d+1-\epsilon(d)}$ in \mathbb{R}^d , $d \ge 3$.
- Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, Welzl'95: There are weak 1/r-nets of size $r^d \log^{c(d)} r$ in \mathbb{R}^d .
- Matoušek, Wagner'04: There are weak 1/r-nets of size $r^d \log^{c(d)} r$ in \mathbb{R}^d , with smaller c(d).

Lower bound on weak ϵ -nets

Triviality

Every weak 1/r-net for any set $S \subset \mathbb{R}^d$ has at least r points.

Proof.

Partition S into r equal parts by r-1 parallel hyperplanes. The slab between every pair of adjacent hyperplanes must contain a point of a weak 1/r-net.

Lower bound on weak ϵ -nets

Triviality

Every weak 1/r-net for any set $S \subset \mathbb{R}^d$ has at least r points.

Proof.

Partition S into r equal parts by r-1 parallel hyperplanes. The slab between every pair of adjacent hyperplanes must contain a point of a weak 1/r-net.

Theorem (B., Matoušek, Nivasch)

There is a set $S \subset \mathbb{R}^d$ for which every weak 1/r-net has at least $c_d r \log^{d-1} r$ points.

How well can one approximate a set by a single point?

Problem

Every set of n points $S \subset \mathbb{R}^d$ determines $\binom{n}{d+1}$ simplices. How many of the simplices can be stabbed by a single point?

How well can one approximate a set by a single point?

Problem

Every set of n points $S \subset \mathbb{R}^d$ determines $\binom{n}{d+1}$ simplices. How many of the simplices can be stabbed by a single point?

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a single point?

Problem

Every set of n points $S \subset \mathbb{R}^d$ determines $\binom{n}{d+1}$ simplices. How many of the simplices can be stabbed by a single point?

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a single point?

Problem

Every set of n points $S \subset \mathbb{R}^d$ determines $\binom{n}{d+1}$ simplices. How many of the simplices can be stabbed by a single point?

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a single point?

Problem

Every set of n points $S \subset \mathbb{R}^d$ determines $\binom{n}{d+1}$ simplices. How many of the simplices can be stabled by a single point? Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a single point?

Problem

Every set of n points $S \subset \mathbb{R}^d$ determines $\binom{n}{d+1}$ simplices. How

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a single point?

Problem

Eveny set of a points $S \subset \mathbb{R}^d$ determines $\binom{n}{2}$ simplices. How Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a *single* point?

Problem

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a *single* point?

Problem

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

How well can one approximate a set by a single point?

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

Approximation by a single point

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

For every $S \subset \mathbb{R}^d$ there is a point that stabs $c_d n^{d+1}$ simplices spanned by S. The constant $c_d > 0$ depends only on the dimension d.

Approximation by a single point

Theorem (Boros-Füredi'77 (d=2), Bárány'82)

For every $S \subset \mathbb{R}^d$ there is a point that stabs $c_d n^{d+1}$ simplices spanned by S. The constant $c_d > 0$ depends only on the dimension d.

Bárány'82:
$$\frac{1}{d!(d+1)^{d+1}} \le c_d.$$

Bárány'82:
$$\frac{1}{d!(d+1)^{d+1}} \le c_d$$
. Boros–Füredi'84: $\frac{1}{27} \le c_2 \le \frac{1}{27} + \frac{1}{729}$.

Wagner'03:
$$\frac{d^2+1}{(d+1)!(d+1)^{d+1}} \le c_d.$$

Gromov'?? (draft):
$$\frac{2d}{(d+1)(d+1)!^2} \le c_d$$
 (in topological setting).

Theorem (B.–Matoušek–Nivasch'08)

There is a construction which demonstrates that $c_d < (d+1)^{-(d+1)}$.

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S and every family of triangles T, there is a point stabbing at least $c\alpha^3 \operatorname{polylog}(\alpha)\binom{n}{3}$ triangles of T.

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S and every family of triangles T, there is a point stabbing at least $c\alpha^3 \operatorname{polylog}(\alpha)\binom{n}{3}$ triangles of T.

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S and every family of triangles T, there is a point stabbing at least $c\alpha^3 \operatorname{polylog}(\alpha)\binom{n}{3}$ triangles of T.

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S and every family of triangles T, there is a point stabbing at least $c\alpha^3 \operatorname{polylog}(\alpha)\binom{n}{3}$ triangles of T.

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S and every family of triangles T, there is a point stabbing at least $c\alpha^3 \operatorname{polylog}(\alpha)\binom{n}{2}$ triangles of T.

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S and every family of triangles T, there is a

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S and every family of triangles T, there is a

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha\binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha\binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha\binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

Problem

Every set of n points $S \subset \mathbb{R}^2$ determines $\binom{n}{3}$ triangles. Let T be a family of any $\alpha \binom{n}{3}$ of these triangles. How many of these triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein'93)

For every point set S there is a family of triangles T, with no point stabbing more than $c\alpha^2\binom{n}{3}$ triangles of T.

Theorem (B.-Matoušek-Nivasch)

There is a point set S and a family of triangles T, with no point stabbing more than $c \frac{\alpha^2}{\log(1/\alpha)} \binom{n}{3}$ triangles of T.

Why are the constructions difficult?

There are many candidates for sets with no small weak ϵ -nets: a chunck of \mathbb{Z}^d lattice, points on a moment curve, points on a sphere, and many others. Probably they all give non-trivial lower bounds, but we cannot prove it.

Main idea

Use any construction whose intersection with convex sets is very simple to describe.

Why are the constructions difficult?

There are many candidates for sets with no small weak ϵ -nets: a chunck of \mathbb{Z}^d lattice, points on a moment curve, points on a sphere, and many others. Probably they all give non-trivial lower bounds, but we cannot prove it.

Main idea

Use any construction whose intersection with convex sets is very simple to describe.

Conjecture

For no set $S \subset \mathbb{R}^d$, $d \geq 3$, in general position there is a weak 1/r-net with only O(r) points.

Construction (d = 2)

Let $A \ll B$ mean that A is **much** smaller than B. Pick

$$x_1 \ll x_2 \ll \cdots \ll x_n \ll y_1 \ll y_2 \ll \cdots \ll y_n$$
.

Let

$$X = \{x_1, \dots, x_m\}, \qquad Y = \{y_1, \dots, y_m\}.$$

The grid $G = X \times Y$ is the construction.

Construction (d = 2)

Let $A \ll B$ mean that A is much smaller than B. Pick

$$x_1 \ll x_2 \ll \cdots \ll x_n \ll y_1 \ll y_2 \ll \cdots \ll y_n$$
.

Let

$$X = \{x_1, \dots, x_m\}, \qquad Y = \{y_1, \cdots, y_m\}.$$

The grid $G = X \times Y$ is the construction.

Line segments

Typical convex hull

Main lemma

In the limit the convex sets have flat top envelope, and unimodal bottom envelope. These are called *stairconvex sets*.

Identify the grid $G = X \times Y$ with the grid $\{0, 1/m, \dots, (m-1)/m\}^2$ inside $[0, 1]^2$.

Lemma

Suppose N is a set of n points in $[0,1]^2$. Then there is a stairconvex set $C \subset [0,1]^2$ of area $c \frac{\log n}{n}$ that misses N.