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Two theorems

and more

Theorem (Rado’46)

For any set P of n points in Rd there is a point p (centerpoint)
such that |H ∩P| ≥ 1

d+1 |P| for every closed halfspace containing p.

Theorem (Vapnik–Chervonenkis’71)

For any set P of n points in R2 there is a set N (net) of

200

ε2
log

200

ε

points such that∣∣∣∣ |T ∩ P|
|P|

− |T ∩ N|
|N|

∣∣∣∣ ≤ ε for every triangle T .
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Theorem (Rado’46)

For any set P of n points in Rd there is a point p (centerpoint)
such that |H ∩P| ≥ 1

d+1 |P| for every closed halfspace containing p.

Theorem (Haussler-Welzl’87)

For any set P of n points in R2 there is a set N (net) of
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points such that

|T ∩ P|
|P|

≥ ε =⇒ T ∩ N 6= ∅ for every triangle T .



Introduction

Basic problem

Let S be a large set of points in Rd . Approximate S by a small set
N that behaves similarly to S .

Definition

Suppose S ⊂ Rd and F is a family of sets in Rd . Then N ⊂ S is
an ε-net for S (with respect to F) if N intersects every F ∈ F
whenever |F ∩ S | ≥ ε|S |.



Wonders of VC-dimension...

Definition

Vapnik-Chervonenkis dimension (abbreviated VC dimension) of a
set family F ⊂ 2X is at least d if there is |Y | = d + 1, for which
F|Y := {F ∩ Y : F ∈ F} is the powerset 2Y .

Theorem

If the family F has finite VC dimension, then for every S there is
always an 1/r -net whose size cr log r . (No matter how large S is!)

Fact
Family of all n-face polyhedra in Rd has finite VC
dimension. More generally, the family of
semialgebraic sets of complexity n has finite VC
dimension.



. . . and its shortcomings

Fact

The family of all the convex sets has
infinite VC dimension. There are no
small ε-nets for points in convex
position.

Definition

A set N ⊂ Rd is a weak ε-net for S ⊂ Rd (with respect to convex
sets) if N intersects every convex set C whenever |C ∩ S | ≥ ε|S |.
(Note that N need not be a subset of S .)
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. . . and its shortcomings
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Weak ε-nets

Definition

A set N ⊂ Rd is a weak ε-net for S ⊂ Rd (with respect to convex
sets) if N intersects every convex set C whenever |C ∩ S | ≥ ε|S |.
(Note that N need not be a subset of S .)

Triviality: There is no weak 1/r -net of size less than r .

Bárány, Füredi, Lovász’90: There are weak 1/r -nets of size
r1026 in R2.

Alon, Bárány, Füredi, Kleitman’92: There are weak 1/r -nets
of size r2 in R2, and of size rd+1−ε(d) in Rd , d ≥ 3.

Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, Welzl’95:
There are weak 1/r -nets of size rd logc(d) r in Rd .

Matoušek, Wagner’04: There are weak 1/r -nets of size
rd logc(d) r in Rd , with smaller c(d).
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Lower bound on weak ε-nets

Triviality

Every weak 1/r -net for any set S ⊂ Rd has at least r points.

Proof.

Partition S into r equal parts by r − 1
parallel hyperplanes. The slab between
every pair of adjacent hyperplanes must
contain a point of a weak 1/r -net.

Theorem (B., Matoušek, Nivasch)

There is a set S ⊂ Rd for which every weak 1/r -net has at least
cd r logd−1 r points.
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There is a set S ⊂ Rd for which every weak 1/r -net has at least
cd r logd−1 r points.



Approximation by a single point

How well can one approximate a set by a single point?

Problem

Every set of n points S ⊂ Rd determines
( n
d+1

)
simplices. How

many of the simplices can be stabbed by a single point?

Theorem (Boros-Füredi’77 (d=2), Bárány’82)

For every S ⊂ Rd there is a point that stabs cdnd+1 simplices
spanned by S. The constant cd > 0 depends only on the
dimension d.
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For every S ⊂ Rd there is a point that stabs cdnd+1 simplices
spanned by S. The constant cd > 0 depends only on the
dimension d.



Approximation by a single point

How well can one approximate a set by a single point?

Problem

Every set of n points S ⊂ Rd determines
( n
d+1

)
simplices. How

many of the simplices can be stabbed by a single point?
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For every S ⊂ Rd there is a point that stabs cdnd+1 simplices
spanned by S. The constant cd > 0 depends only on the
dimension d.



Approximation by a single point

How well can one approximate a set by a single point?

Problem

Every set of n points S ⊂ Rd determines
( n
d+1

)
simplices. How

many of the simplices can be stabbed by a single point?Theorem (Boros-Füredi’77 (d=2), Bárány’82)
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For every S ⊂ Rd there is a point that stabs cdnd+1 simplices
spanned by S. The constant cd > 0 depends only on the
dimension d.



Approximation by a single point

How well can one approximate a set by a single point?

Problem

Every set of n points S ⊂ Rd determines
( n
d+1

)
simplices. How

many of the simplices can be stabbed by a single point?
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Approximation by a single point

Theorem (Boros-Füredi’77 (d=2), Bárány’82)

For every S ⊂ Rd there is a point that stabs cdnd+1 simplices
spanned by S. The constant cd > 0 depends only on the
dimension d.

Bárány’82: 1
d!(d+1)d+1 ≤ cd .

Boros–Füredi’84: 1
27 ≤ c2 ≤ 1

27 + 1
729 .

Wagner’03: d2+1
(d+1)!(d+1)d+1 ≤ cd .

Gromov’?? (draft): 2d
(d+1)(d+1)!2

≤ cd (in topological setting).

Theorem (B.–Matoušek–Nivasch’08)

There is a construction which demonstrates that
cd ≤ (d + 1)−(d+1).



Approximation by a single point: sparse case

Problem

Every set of n points S ⊂ R2 determines
(n
3

)
triangles. Let T be a

family of any α
(n
3

)
of these triangles. How many of these

triangles can be stabbed (intersected) by a single point?

Theorem (Eppstein’93)

For every point set S and every family of triangles T , there is a
point stabbing at least cα3 polylog(α)

(n
3

)
triangles of T .

Theorem (Eppstein’93)

For every point set S there is a family of triangles T , with no point
stabbing more than cα2

(n
3

)
triangles of T .
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Theorem (B.–Matoušek–Nivasch)

There is a point set S and a family of triangles T , with no point
stabbing more than c α2

log(1/α)

(n
3

)
triangles of T .



Why are the constructions difficult?

There are many candidates for sets with no small weak ε-nets: a
chunck of Zd lattice, points on a moment curve, points on a
sphere, and many others. Probably they all give non-trivial lower
bounds, but we cannot prove it.

Main idea

Use any construction whose intersection with convex sets is very
simple to describe.

Conjecture

For no set S ⊂ Rd , d ≥ 3, in general position there is a weak
1/r -net with only O(r) points.
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Construction (d = 2)

Let A � B mean that A is much smaller than B. Pick

x1 � x2 � · · · � xn � y1 � y2 � · · · � yn.

Let
X = {x1, . . . , xm}, Y = {y1, · · · , ym}.

The grid G = X × Y is the construction.
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Construction (d = 2)

Let A � B mean that A is much smaller than B. Pick

x1 � x2 � · · · � xn � y1 � y2 � · · · � yn.

Let
X = {x1, . . . , xm}, Y = {y1, · · · , ym}.

The grid G = X × Y is the construction.

b

a

Line segments Typical convex hull



Main lemma

In the limit the convex sets have
flat top envelope, and unimodal
bottom envelope. These are
called stairconvex sets.a

a

b
b

x1 x1

x2
x2

x3

Identify the grid G = X × Y with the grid
{0, 1/m, . . . , (m − 1)/m}2 inside [0, 1]2.

Lemma

Suppose N is a set of n points in [0, 1]2. Then there is a
stairconvex set C ⊂ [0, 1]2 of area c log n

n that misses N.


