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Two theorems

Theorem (Rado’46)

For any set P of n points in R? there is a point p (centerpoint)
such that |[HNP| > d%rl|P| for every closed halfspace containing p.

Theorem (Vapnik—Chervonenkis'71)

For any set P of n points in R? there is a set N (net) of
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Introduction

Basic problem

Let S be a large set of points in RY. Approximate S by a small set
N that behaves similarly to S.

Definition

Suppose S € RY and F is a family of sets in R?. Then N C S is
an e-net for S (with respect to F) if N intersects every F € F
whenever |[F N S| > €|S].



Wonders of VC-dimension...

Vapnik-Chervonenkis dimension (abbreviated VC dimension) of a

set family F C 2X is at least d if there is |Y| = d + 1, for which
Fly :={FNY :F € F}is the powerset 2.

If the family F has finite VC dimension, then for every S there is
always an 1/r-net whose size crlogr. (No matter how large S is!)

Family of all n-face polyhedra in RY has finite VC ‘
dimension. More generally, the family of

semialgebraic sets of complexity n has finite VC ' '
dimension.




... and its shortcomings

The family of all the convex sets has
infinite VC dimension. There are no
small e-nets for points in convex
position.
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Weak e-nets

Definition
A set N C RY is a weak e-net for S C RY (with respect to convex

sets) if N intersects every convex set C whenever |C N S| > €|S|.
(Note that N need not be a subset of S.)

m Bardny, Fiiredi, Lovdsz'90: There are weak 1/r-nets of size
r1026 in R2,

m Alon, Bardny, Fiiredi, Kleitman'92: There are weak 1/r-nets
of size r2 in R2, and of size r9t1=€(d) in RY, d > 3.

m Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, Welzl'95:
There are weak 1/r-nets of size rlog<(?) r in RY.

m Matousek, Wagner'04: There are weak 1/r-nets of size
r?10g(@) r in RY, with smaller c(d).



Weak e-nets

Definition
A set N C RY is a weak e-net for S C RY (with respect to convex

sets) if N intersects every convex set C whenever |C N S| > €|S|.
(Note that N need not be a subset of S.)

m Triviality: There is no weak 1/r-net of size less than r.
m Bardny, Fiiredi, Lovdsz'90: There are weak 1/r-nets of size
1026 ;) R2
r in R=.
m Alon, Bardny, Fiiredi, Kleitman'92: There are weak 1/r-nets
of size r2 in R2, and of size r9t1-€(d) in RY, d > 3.

m Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, Welzl'95:
There are weak 1/r-nets of size r?log<(?) r in RY.

m Matousek, Wagner'04: There are weak 1/r-nets of size
r?10g(@) r in R9, with smaller c(d).



Lower bound on weak e-nets

Every weak 1/r-net for any set S C R has at least r points.

Partition S into r equal parts by r — 1
parallel hyperplanes. The slab between
every pair of adjacent hyperplanes must
contain a point of a weak 1/r-net.  []




Lower bound on weak e-nets

Every weak 1/r-net for any set S C R has at least r points.

Partition S into r equal parts by r — 1
parallel hyperplanes. The slab between
every pair of adjacent hyperplanes must
contain a point of a weak 1/r-net.  []

Theorem (B., Matou3ek, Nivasch)

There is a set S C RY for which every weak 1/r-net has at least
Cdr Iogd_1 r points.
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Approximation by a single point

Theorem (Boros-Fiiredi'77 (d=2), Barany'82)

For every S C RY there is a point that stabs cyn?t1 simplices

spanned by S. The constant cq4 > 0 depends only on the
dimension d.

(4 o, 1
Barany'82: P CES e < ¢4.
Boros—Fiiredi'84: = gd?lg 141
‘2. L
Wagner'03: WUQ!E,W < ¢,

Gromov'?? (draft): e < cd (in topological setting).

(d+1)(d+1

Theorem (B.—Matou¥ek—Nivasch'08)

There is a construction which demonstrates that
cqd < (d —+ 1)_(d+1).



Approximation by a single point: sparse case
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Theorem (B.—Matou¥ek—Nivasch)

There is a point set S angf a family of triangles T, with no point
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Why are the constructions difficult?

There are many candidates for sets with no small weak e-nets: a
chunck of Z9 lattice, points on a moment curve, points on a
sphere, and many others. Probably they all give non-trivial lower
bounds, but we cannot prove it.

Main idea

Use any construction whose intersection with convex sets is very
simple to describe.




Why are the constructions difficult?

There are many candidates for sets with no small weak e-nets: a
chunck of Z9 lattice, points on a moment curve, points on a
sphere, and many others. Probably they all give non-trivial lower
bounds, but we cannot prove it.

Main idea

Use any construction whose intersection with convex sets is very
simple to describe.

Conjecture

Fornoset S CcRY, d >3, in general position there is a weak
1/r-net with only O(r) points.



Construction (d = 2)

Let A < B mean that A is much smaller than B. Pick
XKL XKk y.

Let
X:{Xla"me}) Y:{yla"'aym}'
The grid G = X x Y is the construction.
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Let A < B mean that A is much smaller than B. Pick
XKL XKk <L y.

Let
X:{Xla"me}? Y:{yla'”aym}'
The grid G = X x Y is the construction.

Line segments Typical convex hull



Main lemma

In the limit the convex sets have
flat top envelope, and unimodal
bottom envelope. These are
called stairconvex sets.

Identify the grid G = X x Y with the grid
{0,1/m, ..., (m —1)/m}? inside [0, 1]°.

Lemma

Suppose N is a set of n points in [0,1]2. Then there is a
stairconvex set C C [0,1]? of area ck’% that misses N.




