Measurable chromatic number and sets with excluded distances

Boris Bukh

June 2007

For a set of distances $D = \{d_1, \ldots, d_k\} \subset \mathbb{R}^+$ a set $A \subset \mathbb{R}^2$ is *D*-avoiding if $x, y \in A$ implies $|x - y| \notin D$.

Definition

Graph G_D has vertex set \mathbb{R}^2 and edges $x \sim y$ whenever $|x - y| \in D$.

Observation

Independent set in $G_D = D$ -avoiding set.

Chromatic number: measurable and not

Definition

Graph G_D has vertex set \mathbb{R}^2 and edges $x \sim y$ whenever $|x - y| \in D$.

$\chi(G_{\{1\}})$ – chromatic number of the plane

Theorem (Compactness)

In ZFC: $\chi(G) = \max_{H \subset G} \chi(H)$ if $\chi(G) < \infty$.

Theorem (Solovay'70)

ZF+ "all subsets of $\mathbb R$ are measurable" is consistent.

Chromatic number: measurable and not

Definition

Graph G_D has vertex set \mathbb{R}^2 and edges $x \sim y$ whenever $|x - y| \in D$.

Definition

Measurable chromatic number $\chi_m(G_D)$ is the smallest number of measurable *D*-avoiding sets needed to cover \mathbb{R}^2 .

$$\chi_m(G_{\{1\}}) \leq 7$$

$|\cdot|$ – Lebesgue measure

Definition

Density of A on domain Ω is

$$d_\Omega(A) = rac{|A \cap \Omega|}{|\Omega|}$$

Q(x, r) – square centered at x of side length r

Definition

Density of A is

$$d(A) = \lim_{R \to \infty} d_{Q(x,R)}(A)$$

$$m(D) = \max_{A ext{ is } D ext{-avoiding }} d(A)$$

is the maximum density of a D-avoiding set.

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Definition

$$m(D) = \max_{A ext{ is } D ext{-avoiding }} d(A)$$

is the maximum density of a D-avoiding set.

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

$$m(D) = \max_{A ext{ is } D ext{-avoiding }} d(A)$$

is the maximum density of a *D*-avoiding set. Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Definition

$$m(D) = \max_{A \text{ is } D - \operatorname{avoiding}} d(A)$$

Theorem

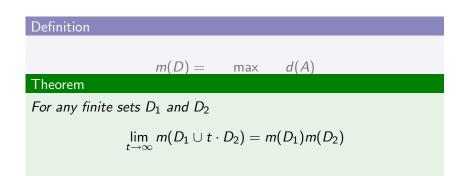
$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Definition

$$m(D) = \max_{A ext{ is } D ext{-avoiding }} d(A)$$

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$



Definition Theorem For any finite sets D_1 and D_2 $\lim_{t\to\infty} m(D_1 \cup t \cdot D_2) = m(D_1)m(D_2)$

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Theorem

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

Proof.

- Let $d_1, d_2, \ldots \notin dist(A)$ grow sufficiently fast.
- Let $D_i = \{d_1, \ldots, d_i\} = D_{i-1} \cup d_i \cdot \{1\}.$
- $m(D_i) \le m(D_{i-1})m(\{1\}) + o(1).$
- Then $d(A) \le m(D_i) \le m(\{1\})^i + o(1)$.

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

Prooflary

• Let $d_1, d_2, \ldots \notin dist(A)$ grow sufficiently fast.

• Let
$$D_i = \{d_1, \ldots, d_i\} = D_{i-1} \cup d_i \cdot \{1\}.$$

$$m(D_i) \le m(D_{i-1})m(\{1\}) + o(1).$$

Then $d(A) \le m(D_i) \le m(\{1\})^i + o(1).$

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

Prooflary

- Let $d_1, d_2, \ldots \notin dist(A)$ grow sufficiently fast.
- Let $D_i = \{d_1, \ldots, d_i\} = D_{i-1} \cup d_i \cdot \{1\}.$
- $\begin{array}{c} m(D_i) \leq m(D_{i-1}) m(\{1\}) + o(1) \\ \hline \text{Then } d(A) \leq m(D_i) \leq m(\{1\})^+ + o(1). \end{array}$

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

Rcooflary

- Let $d_1, d_2, \ldots \notin dist(A)$ grow sufficiently fast.
- Let $D_i = \{d_1, \ldots, d_i\} = D_{i-1} \cup d_i \cdot \{1\}.$
- Then $d(A) \cong m(D_i) (\cong m(19)^1 + o(1).$

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

Rogoflary

• Let $d_1, d_2, \ldots \notin dist(A)$ grow sufficiently fast.

• Let $D_i = \{d_1, \ldots, d_i\} = D_{i-1} \cup d_i \cdot \{1\}.$

 $Then d(A)_{1}(\mathcal{D}_{i})(\mathfrak{S}_{i} \mathfrak{m}(\mathfrak{f}_{1}))^{\underline{i}})+o(1).$

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

- Let $d_1, d_2, \ldots \notin \text{dist}(A)$ grow sufficiently fast.
- Let $D_i = \{d_1, \ldots, d_i\} = D_{i-1} \cup d_i \cdot \{1\}.$ ■ Then $d(A) \leq m(D_i) \leq m(\{1\})^i + o(1).$ ■ $m(D_i) \leq m(D_{i-1})m(\{1\}) + o(1).$

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

- Let $d_1, d_2, \ldots \notin dist(A)$ grow sufficiently fast.
- Then $d(A) \leq m(D_i) \leq m(\{1\})^i + o(1)$. $m(D_i) \leq m(D_{i-1})m(\{1\}) + o(1)$.

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

- Let $d_1, d_2, \ldots \notin \text{dist}(A)$ grow sufficiently fast.
- Then $d(A) \le m(D_i) \le m(\{1\})^i + o(1)$.

Theorem

For any finite sets D_1 and D_2

$$\lim_{t\to\infty}m(D_1\cup t\cdot D_2)=m(D_1)m(D_2)$$

Corollary (Furstenberg-Katznelson-Weiss, Falconer-Marstrand, Bourgain)

If d(A) > 0 then all sufficiently large distances occur between points of A.

- Let $d_1, d_2, \ldots \notin dist(A)$ grow sufficiently fast.
- Then $d(A) \le m(D_i) \le m(\{1\})^i + o(1)$.
- ... and $\chi_m(G_{D_i}) \ge (1/m(\{1\}))^i$

Chromatic number is...

Corollary

For any k there is a set of k distances D such that

 $\chi_m(G_D) \geq 3^k$

Observation

For any set of k distances D

$$\chi(G_D) \leq \chi_m(G_D) \leq 7^k$$

Theorem

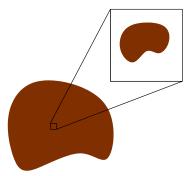
There is a set of k distances D such that

 $\chi(G_D) \ge k\sqrt{\log k}$

Theorem (Zooming lemma)

Main idea

Does A avoid distance d?



Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Main idea

Does A avoid distance d?

Theorem (Zooming lemma)

Theorem (Zooming lemma)

Theorem (Zooming lemma)

The fine details of a set do not matter.

 $I(A) = \int_{\mathbb{R}^2} \mathbf{1}_A(x) \int_{S^1} \mathbf{1}_A(x+y) \, dy \, dx - \text{counts points at distance 1}$

Theorem (Zooming lemma)

The fine details of a set do not matter.

 $I(A) = \int_{\mathbb{R}^2} \mathbf{1}_A(x) \int_{S^1} \mathbf{1}_A(x+y) \, dy \, dx - \text{counts points at distance 1}$

Crucial observation:

$$\begin{split} I(A) &= \int_{\mathbb{R}^2} \mathbf{1}_A(x) \int_{\mathbb{R}^2} \mathbf{1}_A(x+y) \, d\sigma(y) \, dx \qquad \sigma - \text{arclength on } S^1 \\ &= \int_{\mathbb{R}^2} |\widehat{\mathbf{1}_A}(\xi)|^2 \widehat{\sigma}(\xi) \, d\xi \\ & \text{Decays to zero as } |\xi| \to \infty \\ \text{High-frequency (small-scale) details do not contribute much.} \end{split}$$

Definition

A D-avoiding set A is *locally optimal* if for no Ω of finite measure there is a D-avoiding A' such that

 $A' \setminus \Omega = A \setminus \Omega$ $|A' \cap \Omega| > |A \cap \Omega|$

Dessert theorem

For any finite D a locally optimal D-avoiding set exists.