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D-avoiding sets

Definition

For a set of distances D = {d1, . . . , dk} ⊂ R+ a set A ⊂ R2 is
D-avoiding if x , y ∈ A implies |x − y | 6∈ D.

Definition

Graph GD has vertex set R2 and edges x ∼ y whenever
|x − y | ∈ D.

Observation

Independent set in GD = D-avoiding set.



Chromatic number: measurable and not

Definition

Graph GD has vertex set R2 and edges x ∼ y whenever
|x − y | ∈ D.

χ(G{1}) – chromatic number of the plane

Theorem (Compactness)

In ZFC: χ(G ) = maxH⊂G χ(H) if χ(G ) < ∞.

Theorem (Solovay’70)

ZF+“all subsets of R are measurable” is consistent.



Chromatic number: measurable and not

Definition

Graph GD has vertex set R2 and edges x ∼ y whenever
|x − y | ∈ D.

Definition

Measurable chromatic number χm(GD) is the smallest number of
measurable D-avoiding sets needed to cover R2.

χm(G{1}) ≤ 7



Density

| · | – Lebesgue measure

Definition

Density of A on domain Ω is

dΩ(A) =
|A ∩ Ω|
|Ω|

Q(x , r) – square centered at x of side length r

Definition

Density of A is
d(A) = lim

R→∞
dQ(x ,R)(A)



Density decay

Definition

m(D) = max
A is D-avoiding

d(A)

is the maximum density of a D-avoiding set.

Theorem

For any finite sets D1 and D2

lim
t→∞

m(D1 ∪ t · D2) = m(D1)m(D2)
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Density decay

Theorem

For any finite sets D1 and D2

lim
t→∞

m(D1 ∪ t · D2) = m(D1)m(D2)

Corollary (Furstenberg-Katznelson-Weiss,Falconer-Marstrand,Bourgain)

If d(A) > 0 then all sufficiently large distances occur between
points of A.

Proof.

Let d1, d2, . . . 6∈ dist(A) grow sufficiently fast.

Let Di = {d1, . . . , di} = Di−1 ∪ di · {1}.
m(Di ) ≤ m(Di−1)m({1}) + o(1).

Then d(A) ≤ m(Di ) ≤ m({1})i + o(1).
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Density decay

Theorem

For any finite sets D1 and D2

lim
t→∞

m(D1 ∪ t · D2) = m(D1)m(D2)

Corollary (Furstenberg-Katznelson-Weiss,Falconer-Marstrand,Bourgain)

If d(A) > 0 then all sufficiently large distances occur between
points of A.

Proof.Corollary

Let d1, d2, . . . 6∈ dist(A) grow sufficiently fast.

Let Di = {d1, . . . , di} = Di−1 ∪ di · {1}.
m(Di ) ≤ m(Di−1)m({1}) + o(1).

Then d(A) ≤ m(Di ) ≤ m({1})i + o(1).

... and χm(GDi
) ≥ (1/m({1}))i



Chromatic number is...

Corollary

For any k there is a set of k distances D such that

χm(GD) ≥ 3k

Observation

For any set of k distances D

χ(GD) ≤ χm(GD) ≤ 7k

Theorem

There is a set of k distances D such that

χ(GD) ≥ k
√

log k



Main idea

Does A avoid distance d?

Theorem (Zooming lemma)

The fine details of a set do not matter.
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Main idea

Theorem (Zooming lemma)

The fine details of a set do not matter.

I (A) =

∫
R2

1A(x)

∫
S1

1A(x + y) dy dx – counts points at distance 1

Crucial observation:

I (A) =

∫
R2

1A(x)

∫
R2

1A(x + y) dσ(y) dx σ – arclength on S1

=

∫
R2

|1̂A(ξ)|2σ̂(ξ)︸︷︷︸
Decays to zero as |ξ| → ∞

dξ

High-frequency (small-scale) details do not contribute much.
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Dessert

Definition

A D-avoiding set A is locally optimal if for no Ω of finite measure
there is a D-avoiding A′ such that

A′ \ Ω = A \ Ω

|A′ ∩ Ω| > |A ∩ Ω|

Dessert theorem

For any finite D a locally optimal D-avoiding set exists.


