Stabbing simplices by points and affine spaces

Boris Bukh

March 2008

Joint work with Jiří Matoušek and Gabriel Nivasch.

The setting

Let S be a set of n points in \mathbb{R}^d . Every d + 1 of them spans a simplex, for the total of $\binom{n}{d+1}$ simplices. Find a point that stabs (lies in) as many simplices as possible.

Theorem (Bárány'82)

There is always a point stabbing a positive fraction $c_d > 0$ of all the simplices.

Problem

How large is this positive proportion c_d ?

Theorem (Boros-Füredi'84, B.'06)

In the plane there is a point stabbing $n^3/27$ triangles (a 2/9 fraction of the triangles).

Theorem (Bárány'82)

There is a point stabbing

$$\frac{1}{d!} \left(\frac{n}{d+1}\right)^{d+1}$$

d-simplices.

Theorem (Boros-Füredi'84, B.'06)

In the plane there is a point stabbing $n^3/27$ triangles (a 2/9 fraction of the triangles).

Theorem (Wagner'03)

There is a point stabbing

$$\frac{d^2+1}{d+1}\frac{1}{d!}\left(\frac{n}{d+1}\right)^{d+1}$$

d-simplices.

Upper bounds

Theorem (Bárány'82)

If S is any set in general position in \mathbb{R}^d , then no point stabs more than

$$2^{-d}\binom{n}{d+1}$$

d-simplices.

Theorem (Boros-Füredi'84)

There is a planar point set, such no point stabs more than $(1/27 + 1/729)n^3$ triangles.

They claimed the bound 1/27 (which would be sharp), but the proof is wrong.

Theorem (B.-Matoušek-Nivasch)

There is a set S of n-points such that no points stabs more than

$$\left(\frac{n}{d+1}\right)^{d+1}$$

d-simplices.

• Sharp for d = 2.

Very simple construction.

Theorem (B.-Matoušek-Nivasch)

There is a set S of n-points such that no points stabs more than

$$\left(\frac{n}{d+1}\right)^{d+1}$$

d-simplices.

• Sharp for d = 2.

• Very simple construction.

Theorem (B.-Matoušek-Nivasch)

There is a set S of n-points such that no points stabs more than

$$\left(\frac{n}{d+1}\right)^{d+1}$$

d-simplices.

- Sharp for d = 2.
- Very simple construction.

Let S be a set of n points in \mathbb{R}^d . Every d - k + 1 of them spans a (d - k)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.

Example

Let S be a set of n points in \mathbb{R}^d . Every d - k + 1 of them spans a (d - k)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.

Example

Let S be a set of n points in \mathbb{R}^d . Every d - k + 1 of them spans a (d - k)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.

Example

Let S be a set of n points in \mathbb{R}^d . Every d - k + 1 of them spans a (d - k)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.

Example

Let *S* be a set of *n* points in \mathbb{R}^d . Every d - k + 1 of them spans a (d - k)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a *k*-dimensional affine subspace (*k*-flat) that stabs as many simplices

Example

Let *S* be a set of *n* points in \mathbb{R}^d . Every d - k + 1 of them spans a (d - k)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a *k*-dimensional affine subspace (*k*-flat) that stabs as many simplices Example

Let *S* be a set of *n* points in \mathbb{R}^d . Every d - k + 1 of them spans a (d - k)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a

Example

Let S be a set of n points in \mathbb{R}^d . Every d - k + 1 of them spans a

Example

Let S be a set of n points in \mathbb{R}^d . Every d = k + 1 of them spans a **Example**

Example

Example

Example

Generalization

Example

Generalization

Example

If d = 3 and k = 1, then we want to stab as many triangles in \mathbb{R}^3 as possible with a line.

Simple idea

Project the point into xy plane, and apply Boros-Füredi result. We obtain a line stabbing $n^3/27$ triangles.

Generalization

Example

If d = 3 and k = 1, then we want to stab as many triangles in \mathbb{R}^3 as possible with a line.

Naïve idea

Project the point into xy plane, and apply Boros-Füredi result. We obtain a line stabbing $n^3/27$ triangles.

Theorem (B.-Matoušek-Nivasch)

There is a line stabbing $n^3/25$ triangles.

Why care?

Trivial

Stabbing $n^3/27$ triangles.

Non-trivial

Stabbing $n^3/25$ triangles.

1/25 - 1/27 is only 0.3%!

Why care?

Trivial

Stabbing $n^3/27$ triangles.

Non-trivial

Stabbing $n^3/25$ triangles.

1/25-1/27 is only 0.3%!

Answer #1

Recall: Bárány('82) showed that for no point set $S \subset \mathbb{R}^2$ there is a point stabbing more than $n^3/24$ triangles. Hence for no point set $S \subset \mathbb{R}^3$ there is a line stabbing more than $n^3/24$ triangles.

Why care?

Trivial

Stabbing $n^3/27$ triangles.

Non-trivial

Stabbing $n^3/25$ triangles.

1/25-1/27 is only 0.3%!

Answer #1

Recall: Bárány('82) showed that for no point set $S \subset \mathbb{R}^2$ there is a point stabbing more than $n^3/24$ triangles. Hence for no point set $S \subset \mathbb{R}^3$ there is a line stabbing more than $n^3/24$ triangles.

Answer #2

For the analogous problem of stabbing sparse families of triangles the gap might be worse.

A different problem

Let S be a set of n points in \mathbb{R}^d . Every 3 of them spans a triangle, for the total of $\binom{n}{3}$ triangles. Let T be a family of any m of these triangles. Find a d - 2-flat that stabs as many triangles in T as possible.

Eppstein'93

For the triangles in the plane (d = 2) there is a point that stabs m^3

$$\frac{11}{n^6 \log^2 n}$$

triangles.

Dey-Edelsbrunner'94, Smorodinsky'03

For the triangles in the space (d = 3) there is a line that stabs

$$\frac{m^3}{n^6}$$

triangles.