Stabbing simplices by points and affine spaces

Boris Bukh

March 2008

Joint work with Jiří Matoušek and Gabriel Nivasch.

Introduction

The setting

Let S be a set of n points in \mathbb{R}^{d}. Every $d+1$ of them spans a simplex, for the total of $\binom{n}{d+1}$ simplices. Find a point that stabs (lies in) as many simplices as possible.

Theorem (Bárány'82)

There is always a point stabbing a positive fraction $c_{d}>0$ of all the simplices.

Problem

How large is this positive proportion c_{d} ?

Lower bounds

Theorem (Boros-Füredi'84, B. '06)

In the plane there is a point stabbing $n^{3} / 27$ triangles (a 2/9 fraction of the triangles).

Theorem (Bárány'82)
There is a point stabbing

$$
\frac{1}{d!}\left(\frac{n}{d+1}\right)^{d+1}
$$

d-simplices.

Lower bounds

Theorem (Boros-Füredi'84, B. '06)

In the plane there is a point stabbing $n^{3} / 27$ triangles (a 2/9 fraction of the triangles).

Theorem (Wagner'03)

There is a point stabbing

$$
\frac{d^{2}+1}{d+1} \frac{1}{d!}\left(\frac{n}{d+1}\right)^{d+1}
$$

d-simplices.

Upper bounds

Theorem (Bárány'82)

If S is any set in general position in \mathbb{R}^{d}, then no point stabs more than

$$
2^{-d}\binom{n}{d+1}
$$

d-simplices.

Theorem (Boros-Füredi'84)

There is a planar point set, such no point stabs more than $(1 / 27+1 / 729) n^{3}$ triangles.

They claimed the bound $1 / 27$ (which would be sharp), but the proof is wrong.

New upper bounds

Theorem (B.-Matoušek-Nivasch)
There is a set S of n-points such that no points stabs more than

$$
\left(\frac{n}{d+1}\right)^{d+1}
$$

d-simplices.

- Sharp for $d=2$.

New upper bounds

Theorem (B.-Matoušek-Nivasch)
There is a set S of n-points such that no points stabs more than

$$
\left(\frac{n}{d+1}\right)^{d+1}
$$

d-simplices.

- Sharp for $d=2$.
- Very simple construction.

New upper bounds

Theorem (B.-Matoušek-Nivasch)
There is a set S of n-points such that no points stabs more than

$$
\left(\frac{n}{d+1}\right)^{d+1}
$$

d-simplices.

- Sharp for $d=2$.

■ Very simple construction.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a ($d-k$)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a ($d-k$)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a $(d-k)$-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a $(d-k)$-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices as possible.
Example
If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a ($d-k$)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subspace (k-flat) that stabs as many simplices

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a ($d-k$)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a k-dimensional affine subsnace (k-flat) that stabs as manv simolices Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a ($d-k$)-simplex, for the total of $\binom{n}{d-k+1}$ simplices. Find a

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Let S be a set of n points in \mathbb{R}^{d}. Every $d-k+1$ of them spans a
Example
If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

General problem

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible

Generalization

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Generalization

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Simple idea

Project the point into $x y$ plane, and apply Boros-Füredi result. We obtain a line stabbing $n^{3} / 27$ triangles.

Generalization

Example

If $d=3$ and $k=1$, then we want to stab as many triangles in \mathbb{R}^{3} as possible with a line.

Naïve idea

Project the point into $x y$ plane, and apply Boros-Füredi result. We obtain a line stabbing $n^{3} / 27$ triangles.

Theorem (B.-Matoušek-Nivasch)

There is a line stabbing $n^{3} / 25$ triangles.

Why care?

Trivial
Stabbing $n^{3} / 27$ triangles.

Non-trivial

Stabbing $n^{3} / 25$ triangles.

$$
1 / 25-1 / 27 \text { is only } 0.3 \% \text { ! }
$$

Why care?

Trivial
Stabbing $n^{3} / 27$ triangles.

Non-trivial

Stabbing $n^{3} / 25$ triangles.

$$
1 / 25-1 / 27 \text { is only } 0.3 \% \text { ! }
$$

Answer \#1

Recall: Bárány('82) showed that for no point set $S \subset \mathbb{R}^{2}$ there is a point stabbing more than $n^{3} / 24$ triangles. Hence for no point set $S \subset \mathbb{R}^{3}$ there is a line stabbing more than $n^{3} / 24$ triangles.

Why care?

Trivial

Stabbing $n^{3} / 27$ triangles.

Non-trivial

Stabbing $n^{3} / 25$ triangles.

$$
1 / 25-1 / 27 \text { is only } 0.3 \% \text { ! }
$$

Answer \#1

Recall: Bárány('82) showed that for no point set $S \subset \mathbb{R}^{2}$ there is a point stabbing more than $n^{3} / 24$ triangles. Hence for no point set $S \subset \mathbb{R}^{3}$ there is a line stabbing more than $n^{3} / 24$ triangles.

Answer \#2

For the analogous problem of stabbing sparse families of triangles the gap might be worse.

A different problem

Let S be a set of n points in \mathbb{R}^{d}. Every 3 of them spans a triangle, for the total of $\binom{n}{3}$ triangles. Let T be a family of any m of these triangles. Find a $d-2$-flat that stabs as many triangles in T as possible.

Eppstein'93

For the triangles in the plane $(d=2)$ there is a point that stabs

$$
\frac{m^{3}}{n^{6} \log ^{2} n}
$$

triangles.

Dey-Edelsbrunner'94, Smorodinsky'03

For the triangles in the space $(d=3)$ there is a line that stabs

$$
\frac{m^{3}}{n^{6}}
$$

triangles.

