Extremal graphs without exponentially-small bicliques

Boris Bukh

April 2023

Turán numbers

Paul Turán 1941:

ex(n, F) = max e(G) in an F-free n-vertex graph G

Turán numbers

Paul Turán 1941:

ex(n, F) = max e(G) in an F-free n-vertex graph G

Short summary:

$$\operatorname{ex}(n,F) = \operatorname{asymptotic}$$
 formula if $\chi(F) > 2$,
 $\operatorname{ex}(n,F) = \operatorname{mystery}$ if $\chi(F) = 2$.

Turán numbers: Bipartite case

Kövári–Sós–Turán 1954:

$$\exp(n, K_{s,t}) = O(n^{2-1/s})$$

Turán numbers: Bipartite case

Kövári–Sós–Turán 1954:

$$\exp(n, K_{s,t}) = O(n^{2-1/s})$$

Sharp:

$$s = 2$$

 $s = 3$
 $t \gg s$

$$K_{s,t}$$
-free with $\Omega(n^{2-1/s})$ edges

t > s!Kollár, Rónyai, Szabo 1996t > (s-1)!Alon, Rónyai, Szabo 1999

Theorem

There are extremal $K_{s,t}$ -free graphs for

 $t > 9^{s+O(s^{2/3}\log s)}$.

$$K_{s,t}$$
-free with $\Omega(n^{2-1/s})$ edges

t > s!Kollár, Rónyai, Szabo 1996t > (s-1)!Alon, Rónyai, Szabo 1999

Graph

$$\begin{array}{c} x_1 \\ \vdots \\ x_s \end{array} \end{array} \begin{array}{c} y \\ f(x_1, \dots, x_s) \\ f(x_1, \cdot) = 0 \\ \vdots \\ f(x_s, \cdot) = 0 \end{array}$$

Bezout:

$$\deg f = d$$
$$\bigcup_{\text{(maybe)}} d^s \operatorname{solns.}$$

Graph

$$\begin{pmatrix} x_1 \\ \vdots \\ x_s \end{pmatrix} \end{pmatrix} \begin{pmatrix} y \\ f(x_1, \dots, x_s) \\ f(x_1, \cdot) = 0 \\ \vdots \\ f(x_s, \cdot) = 0 \end{pmatrix}$$

Bezout:

$$\deg f = d$$
$$\bigcup_{\text{(maybe)}} d^s \operatorname{solns.}$$

Low-degree f?

Graph Graph $V(x_1, \ldots, x_s)$ $f(x_1, \cdot) = 0$ \vdots $f(x_s, \cdot) = 0$

Trouble:

$$\deg f = d$$

collinear x_1, \ldots, x_s

Low-degree *f*?

Full story

