Extremal graphs without exponentially-small bicliques

Boris Bukh

April 2023

Turán numbers

Paul Turán 1941:

$$
\begin{aligned}
\operatorname{ex}(n, F)= & \operatorname{maxe}(G) \text { in an } F \text {-free } \\
& n \text {-vertex graph } G
\end{aligned}
$$

Paul Turán 1941:

$$
\begin{aligned}
\operatorname{ex}(n, F)= & \operatorname{maxe}(G) \text { in an } F \text {-free } \\
& n \text {-vertex graph } G
\end{aligned}
$$

Short summary:

$$
\begin{array}{ll}
\mathrm{ex}(n, F)=\text { asymptotic formula } & \text { if } \chi(F)>2 \\
\mathrm{ex}(n, F)=\text { mystery } & \text { if } \chi(F)=2
\end{array}
$$

Turán numbers: Bipartite case

Kövári-Sós-Turán 1954:

$$
\operatorname{ex}\left(n, K_{s, t}\right)=O\left(n^{2-1 / s}\right)
$$

Turán numbers: sipartite case

Kövári-Sós-Turán 1954:

$$
\operatorname{ex}\left(n, K_{s, t}\right)=O\left(n^{2-1 / s}\right)
$$

Sharp:

$$
\begin{aligned}
& s=2 \\
& s=3 \\
& t \gg s
\end{aligned}
$$

Turán numbers: Bidiques

$K_{s, t}$-free with $\Omega\left(n^{2-1 / s}\right)$ edges
$t>s!$
Kollár, Rónyai, Szabo 1996
$t>(s-1)!\quad$ Alon, Rónyai, Szabo 1999

Theorem
There are extremal $K_{s, t}$-free graphs for

$$
t>9^{s+O\left(s^{2 / 3} \log s\right)}
$$

Turán numbers: Bidiques

$K_{s, t}$-free with $\Omega\left(n^{2-1 / s}\right)$ edges
$t>s!$
Kollár, Rónyai, Szabo 1996
$t>(s-1)!\quad$ Alon, Rónyai, Szabo 1999

Theorem
There are extremal $K_{s, t}$-free graphs

$$
t>9^{s+O\left(s^{2 / 3} \log s\right)}
$$

Bumpy space

Turán numbers: Bidiques

$K_{2,2}$-free

plane \mathbb{F}_{q}^{2}

Theorem
There are extremal $K_{s, t}$-free graphs
Bumpy space

$$
t>9^{s+O\left(s^{2 / 3} \log s\right)}
$$

Turán numbers: Bidiques

$K_{2,2}$-free

plane \mathbb{F}_{q}^{2}
Theorem
There are extremal $K_{s, t}$-free graphs

Turán numbers: Bidiques

$K_{3,3}$-free

space \mathbb{F}_{q}^{3}

Theorem
There are extremal $K_{s, t}$-free graphs

Bumpy?

Vertex set

Bumpy?

Graph

Vertex set

Bumpy?

Bumpy?

Bezout:
$\operatorname{deg} f=d$

d^{5} solns.
(maybe)

Bumpy?

Bezout:
$\operatorname{deg} f=d$
\Downarrow
d^{s} solns.
(maybe)

Low-degree f ?

Bumpy?

Graph

$$
\left(\begin{array}{c}
x_{1} \\
0 \\
\vdots \\
x_{s}
\end{array}\right) \quad \begin{gathered}
\\
y \\
\\
\begin{array}{c}
N\left(x_{1}, \ldots, x_{s}\right) \\
f\left(x_{1}, \cdot\right)=0 \\
\vdots \\
f\left(x_{s}, \cdot\right)=0
\end{array}
\end{gathered}
$$

Trouble:

$$
\operatorname{deg} f=d
$$

collinear x_{1}, \ldots, x_{s}

$$
\begin{gathered}
x_{1} \sim y, \ldots, x_{d+1} \sim y \\
\Downarrow \\
\text { all } x_{i} \sim y
\end{gathered}
$$

Low-degree f ?

Bumpy?

Graph

Trouble:

Full story

Avoid points on
 'simple' varieties

Randomize polynomials

Cut highdimensional constructions

Waring-type problem for polynomials

