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Abstract

An induced subgraph is called homogeneous if it is either a clique or an independent set. Let
hom(G) denote the size of the largest homogeneous subgraph of a graph G. In this short paper
we study properties of graphs on n vertices with hom(G) ≤ C log n for some constant C. We
show that every such graph contains an induced subgraph of order αn in which β

√
n vertices have

different degrees, where α and β depend only on C. This proves a conjecture of Erdős, Faudree
and Sós.

1 Introduction

All graphs considered here are finite, undirected and simple. Given a graph G with vertex set V (G)
and edge set E(G), let α(G) and ω(G) denote the size of the largest independent set and the size of
the largest clique in G, respectively. An induced subgraph of G is called homogeneous if it is either a
clique or an independent set. The size of the largest homogeneous subgraph of a graph G is denoted
by hom(G), i.e., let hom(G) = max

(
α(G), ω(G)

)
. A classic result in Ramsey Theory [13] asserts

that hom(G) ≥ 1
2 log n for any graph G on n vertices. On the other hand, it was shown by Erdős [7]

that there are graphs with hom(G) ≤ 2 log n. (Here, and throughout the paper all logarithms are
to the base 2). The graphs for which hom(G) is very small compared to the number of vertices are
usually called Ramsey graphs. The only kind of proof of existence of graphs with hom(G) ≤ O(log n)
which we have so far comes from various models of random graphs with edge density bounded away
from 0 and 1. This supports the belief that any graph with small hom(G) looks ‘random’ in one
sense or another. By now there are several known results which indeed show that Ramsey graphs
have certain random-like properties.

The first advance in making the above intuition rigorous was made by Erdős and Szemerédi [14]
who proved that hom(G) ≤ C log n for fixed C implies that the edge density of G is indeed bounded
away from 0 and 1. Later Erdős and Hajnal [10] proved that such graphs are k-universal for every
fixed k, i.e., they contain every graph H on k vertices as induced subgraph. This was extended
further by Prömel and Rödl [16], who obtained asymptotically best possible result. They proved
that if hom(G) ≤ C log n then G is an fact c log n-universal for some constant c which depends on C.
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A related result which shows that Ramsey graphs have many distinct induced subgraphs was
obtained by Shelah [17] (improving earlier estimate from [3]). He settled a conjecture of Erdős and
Rényi, that every graph G with hom(G) ≤ C log n contains 2cn non-isomorphic induced subgraphs,
where c is a positive constant depending only on C. Another question, with a similar flavor, was
posed by Erdős and McKay [8, 9]. It asks whether every graph on n vertices with no homogeneous
subgraph of order C log n contains an induced subgraph with exactly t edges for every 1 ≤ t ≤ Θ(n2).
This conjecture is still wide open. In [5] it was proved for random graphs. In the general case, Alon,
Krivelevich and Sudakov [2] proved that such graph always contains induced subgraphs with every
number of edges up to nδ, where δ > 0 depends only on C.

In this paper we study the number of distinct degrees in induced subgraphs of Ramsey graphs.
The following problem was posed by Erdős, Faudree and Sós [8, 9]. They conjectured that every G

on n vertices with hom(G) ≤ C log n contains an induced subgraph on a constant fraction of vertices
which has Ω

(√
n
)

different degrees. Here we obtain the result that confirms this conjecture and gives
an additional evidence for the random-like behavior of Ramsey graphs.

Theorem 1.1 Let G be a graph on n vertices with hom(G) ≤ C log n, for some constant C. Then
G contains an induced subgraph of order αn with β

√
n vertices of different degrees, where α and β

depend only on C.

Throughout this paper, we will make no attempt to optimize our absolute constants, and will
often omit floor and ceiling signs whenever they are not crucial, for the sake of clarity of presentation.
We also may and will assume that the number of vertices of G is sufficiently large.

2 Proof of the main theorem

First we define the notation that we are going to use. Numerous absolute constants that appear
throughout the proof are denoted by c1, c2, . . . . In a graph, the density of a set of vertices A is
defined as

d(A) =
e(A)(|A|

2

)
where e(A) is the number of edges which are contained inside A. Similarly, for any two sets A and
B the density is

d(A,B) =
e(A,B)
|A||B|

where e(A,B) is the number of edges between A and B. We abbreviate d({x}, B) to d(x,B). For any
vertex x and a set B the neighbors of x in B are denoted by NB(x) and non-neighbors are denoted
by NB(x). We denote the degree by degB(x) = |NB(x)|. For two sets X and Y , the usual symmetric
difference (X \ Y ) ∪ (Y \X) is denoted by X∆Y .

In the proof we will use the following theorem of Erdős-Szemerédi mentioned above.

2



Theorem 2.1 ([14]) Let G be a graph on n vertices of density d ≤ 1/2. Then there exist an absolute
constant c1 such that

hom(G) ≥ c1
1

d log(1/d)
log n.

Our proof of the conjecture of Erdős and Sós is based on the following result, which merits being
stated separately. First, we need a definition, though. A graph H of order n is called c-diverse if for
every vertex x ∈ V (H) there are at most n1/5 vertices y ∈ V (H) with |NH(x)∆NH(y)| < cn.

Lemma 2.2 Let G be a graph on n vertices with hom(G) ≤ C log n. Let K = dc2C log(C + 1)e,
m = 8−Kn and c = 1/K. If m ≥ 4 and an absolute constant c2 is sufficiently large, then G contains
an induced c-diverse subgraph on at least m vertices.

Proof. To prove this statement we will use some ideas from [16, 17]. Suppose the conclusion of the
lemma fails. We will construct a sequence of disjoint vertex sets S1, S2, . . . , SK each of the size m1/5

such that for every 1 ≤ j ≤ K either

d(Sj , Si) < 8c for all i > j (1a)

or
d(Sj , Si) > 1− 8c for all i > j. (1b)

Simultaneously with the sequence of Si’s we construct a nested sequence of induced subgraphs
G = G0 ⊃ G1 ⊃ · · · ⊃ GK , which satisfy |Gi| ≥ |Gi−1|/8 for all 1 ≤ i ≤ K. The sets Si will
be chosen so that Si ⊂ Gi−1.

Suppose the sets Sj as well as the graphs Gj have been constructed for all j < i and we wish
to construct Si and Gi. The inductive hypothesis implies that |Gi−1| ≥ 81−i|G| ≥ m. Since the
conclusion of the lemma fails, Gi−1 is not c-diverse. Therefore, there exist x ∈ V (Gi−1) and a set
Si ⊂ Gi−1 with |Si| ≥ m1/5 such that |NGi−1(x)∆NGi−1(y)| ≤ c|Gi−1| for every y ∈ Si. By throwing
away elements of Si if needed, we can assume that |Si| = m1/5. Let B = V (Gi−1) \ Si. Since clearly
m1/5 ≤ m/2, we have that |B| ≥ |Gi−1|/2.

Suppose |NB(x)| ≥ |B|/2. Then for every y ∈ Si we have d(y, NB(x)) ≤ c|Gi−1|/|NB(x)| ≤ 4c.
Let F =

{
z ∈ NB(x) | d(z, Si) ≤ 8c

}
and D = NB(x) \ F . Since

8c|D| ≤
∑
z∈D

d(z, Si) =
e(D,Si)
|Si|

≤ e(NB(x), Si)
|Si|

=
|NB(x)|
|Si|

∑
y∈Si

d(y, NB(x)) ≤ 4c|NB(x)|,

we have that |D| ≤ |NB(x)|/2 and so |F | ≥ |NB(x)|/2 ≥ |B|/4. Similarly, if |NB(x)| ≥ |B|/2, then
we set F =

{
y ∈ NB(x) | d(y, Si) ≥ 1 − 8c

}
and |F | ≥ |B|/4 holds again. Let Gi be the graph

induced on F . By the definition of the set F either all subsets U ⊆ Gi satisfy satisfy d(Si, U) ≤ 8c

or they all satisfy d(Si, U) ≥ 1 − 8c. This guarantees that for t > i either all d(Si, St) will satisfy
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(1a) or they all will satisfy (1b). Since |B| ≥ |Gi−1|/2, we have |Gi| ≥ |Gi−1|/8. This completes the
inductive construction of Si and Gi.

By passing to the complement if needed, we may assume that for at least half of all the sets
{Si}K

i=1 the alternative (1a) holds. Recall that c = 1/K. Let Si1 , . . . , Sir be the sets for which (1a)
holds, where r ≥ K/2. Let S =

⋃r
k=1 Sik . It is easy to see that, d(S) ≤ 8c + 1/r ≤ 10/K. Therefore

Theorem 2.1 implies that hom(G) ≥ hom(S) ≥ c1
K

10 log(K/10) log|S|. Since log |S| ≥ 1
5 log m ≥

1
5 log n−K, by choosing a large enough value of c2, we get hom(G) ≥ hom(S) ≥ 6C log|S| > C log n

contradicting the assumption of the lemma. �

Remark. The constant 1/5 appearing in the definition of diverse graph can be replaced by any
fixed 0 < ε < 1. In the case of such a replacement, the (far from optimal) constants appearing in the
Lemma 2.2 will have to be changed accordingly.

Lemma 2.3 Let G be a c-diverse graph on n vertices. Then for each n/4 ≤ m ≤ 3n/4 there is an
induced subgraph of G on m vertices containing vertices of 1

576

√
cn distinct degrees.

Proof. Fix m as above and choose a set A uniformly at random among all m-element subsets
of V (G). Let H be the graph induced on A. It is enough to show that with positive probability H

has the desired property.
For distinct vertices x, y ∈ V (G) define the indicator random variable Ixy by

Ixy =

1, if x, y ∈ V (H) and degH(x) = degH(y),

0, otherwise.

Then

E[Ixy] = Pr[x, y ∈ V (H)] Pr[degH(x) = degH(y) | x, y ∈ V (H)]

≤ Pr[degA(x) = degA(y)].

Furthermore,

Pr
[
degA(x) = degA(y)

]
= Pr

[
|(NG(x) \NG(y)) ∩A| = |(NG(y) \NG(x)) ∩A|

]
Let D = NG(x)∆NG(y) and k = |D ∩ A|. Suppose that |D| ≥ cn and let W be the event that
k < |D|/8 or k > 7|D|/8. Since the value of k has hypergeometric distribution, it is sharply
concentrated around its mean |D|/4 ≤ m

n |D| ≤ 3|D|/4. Thus, by Azuma-Hoeffding inequality (see,
e.g., Chapter 2 of [15]), we have Pr[W ] ≤ e−Θ(|D|) = e−Θ(n) = o(n−1/2). Then

Pr
[
degA(x) = degA(y) | |D|/8 ≤ |D ∩A| = k ≤ 7|D|/8

]
=

(|NG(x)\NG(y)|
k/2

)(NG(y)\NG(x)
k/2

)(|D|
k

) ,

which by Stirling’s formula together with convexity does not exceed(|D|/2
k/2

)2(|D|
k

) ≤ (1 + o(1))

√
2|D|

k(|D| − k)
≤ 7√

|D|
≤ 7√

cn
.
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Summing up over all values of k we conclude that if |NG(x)∆NG(y)| ≥ cn then E[Ixy] ≤ 8√
cn

.

Let I =
∑

x,y∈V (G) Ixy. By the definition of c-diverse graph we have that E[Ixy] ≤ 8√
cn

for all but

at most n1+1/5 pairs x, y ∈ V (G). Therefore E[I] ≤ n1+1/5 + 8n2/
√

cn ≤ 9n3/2/
√

c. Hence there is a
particular choice for A such that I ≤ 9n3/2/

√
c. Let r be the number of vertices of distinct degrees

in H and let ak be the number of vertices in H with degree k. Then
∑

k ak = m and by convexity

I =
∑

k

(
ak

2

)
≥ r

(1
r

∑
k ak

2

)
≥ m2

4r
≥ n2

64r
.

This implies r ≥ 1
9·64

√
cn and completes the proof. �

The proof of Theorem 1.1 follows immediately from the two previous lemmas. It is worth noting
that the value of β that it gives is (C + 1)−c3C for some absolute constant c3.

We have been unable to decide whether in Theorem 1.1 the exponent 1/2 in n1/2 can be further
improved to 1/2 + ε for some constant ε > 0. However, using random graphs, one can show that
1/2 cannot be replaced by anything greater than 2/3. As usual, G(n, 1/2) is the probability space
of all labeled graphs on n vertices, where every edge appears randomly and independently with
probability 1/2. We say that the random graph has a property P almost surely, or a.s. for brevity, if
the probability that G(n, 1/2) satisfies P tends to 1 as n tends to infinity. It is well known (see [7])
that the largest homogeneous subgraph of G(n, 1/2) has a.s. size O(log n). Next we prove that an
induced subgraph of this graph cannot have too many distinct degrees.

Proposition 2.4 The random graph G(n, 1/2) almost surely contains no induced subgraph with
8n2/3 vertices of distinct degrees.

Proof. Let A be a subset of G(n, 1/2) of size a such that the subgraph G′ induced by A has 8n2/3

vertices with different degrees. Then either G′ has at least 2n2/3 vertices with degree ≥ a/2 + 2n2/3

or it has at least 2n2/3 vertices with degree ≤ a/2 − 2n2/3. Consider the first case, the other one
can be treated similarly. Let B ⊂ A be the set of b = 2n2/3 vertices whose degree in G′ is at least
a/2 + 2n2/3. Since

∑
v∈B degA(v) = 2e(B) + e(B,A \ B), it is easy to see that, either there are at

least b2/4+bn2/3/2 edges inside B or there are at least b(a−b)/2+bn2/3 edges between B and A\B.
By Chernoff’s inequality (see, e.g., Appendix A [4]) the probability of the first event is at most(

n

b

)
e−Θ(n4/3) ≤ eO(n2/3 log n)e−Θ(n4/3) = o(1).

Similarly the probability of the second event is bounded by∑
a

(
n

b

)(
n

a

)
e−bn4/3/(2a) ≤ n · nb · 2n · e−n = 2(1+o(1))ne−n = o(1).

Thus with probability 1− o(1) there is no induced subgraph G′ as above. �

It is worth noting that the exponent 2/3 in the above proof is essentially best possible, since
G(n, 1/2) a.s. contains an induced subgraph G′ of order m which has Ω(n2/3) vertices of degree
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≥ m/2 + Ω(n2/3). Indeed, fix an arbitrary set B of size 4n2/3 in G(n, 1/2), and let

A =
{
x ∈ V (G) \B | degB(x) ≥ |B|/2 + n1/3

}
.

Using approximation of the binomial distribution by standard normal distribution it is easy to check
that for each x 6∈ B, Pr[x ∈ A] ≥ 1/10. Since for distinct vertices these events are clearly independent,
we have that a.s. |A| ≥ n/11. Let

B1 = {y ∈ B | degA(y) ≥ |A|/2 + n2/3/100}

and B2 = B \B1. Then, using that |A| ≥ n/11 and |B2| ≤ 4n2/3, we conclude

e(A,B1) = e(A,B)− e(A,B2) ≥ |A||B|/2 + |A|n1/3 − |A||B2|/2− |B2|n2/3/100

≥ |A||B1|/2 + |A|n1/3/2. (2)

Suppose that |B1| ≤ n2/3/40, then by Chernoff bound the probability that G(n, 1/2) contains sets
A and B1 satisfying inequality (2) is at most(

n

|B1|

)(
n

|A|

)
e−|A1|n2/3/(8|B1|) ≤

(
en

|A1|

)(1+o(1))|A1|
e−5|A1| ≤ e4|A1|e−5|A1| = o(1).

This implies that a.s. |B1| > n2/3/40. Since a.s. most v ∈ B1 satisfy degB1
(v) ≥ |B1|/2 − n1/2 we

have that the subgraph induced by B1 ∪A has the desired property.

3 Concluding remarks

• We already mentioned in introduction several results and conjectures about properties of Ram-
sey graphs. An additional such problem, which is closely related to our results, was posed
by Erdős, Faudree and Sós [8, 9]. They conjectured that every graph on n vertices with no
homogeneous subset of size C log n contains at least Ω

(
n5/2

)
induced subgraphs any two of

which differ either in the number of vertices or in the number of edges. Using our proof of
Theorem 1.1 one can easily obtain the following result.

Proposition 3.1 If G has n vertices and hom(G) ≤ C log n, then the number of distinct pairs(
|V (H)|, |E(H)|

)
as H ranges over all induced subgraphs of G is at least Ω

(
n3/2

)
.

Proof. By Lemma 2.2, G contains an induced c-diverse subgraph G′ on n′ = Ω(n) vertices.
By Lemma 2.3, G′ contains for every n′/4 ≤ m ≤ 3n′/4 an induced subgraph on m vertices
with Ω(

√
n′) = Ω(

√
n) distinct degrees. Deleting these vertices, one at a time, gives Ω(

√
n)

induced subgraphs of G of order m− 1 all of which obviously have different numbers of edges.
Since there are Ω(n) choices for m the result follows. �

Although this proposition is much weaker than Erdős-Faudree-Sós conjecture, we believe that
our methods might prove useful to attack their problem.
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• The conventional belief that graphs with small homogeneous subgraphs have many random-like
properties goes beyond the graphs with hom(G) ≤ C log n. For example, the famous Erdős-
Hajnal conjecture [11] states that for every fixed graph H, there exist ε(H) > 0 such that every
graph on n vertices without homogeneous subgraphs of order nε contains an induced copy of
H.

Even graphs with relatively large homogeneous subgraphs tend to be jumbled. For instance,
Alon and Bollobás [1] proved that for sufficiently small δ if a graph contains no homogeneous
set on (1 − 4δ)n vertices, then the graph contains δn2 non-isomorphic induced subgraphs. A
somewhat stronger result was proved by Erdős and Hajnal [12].

In the light of the above, it seems likely that every graph without homogeneous subgraph of
order nε should contain an induced subgraph of linear size with Ω(n1/2−ε) distinct degrees.
However, our proof of Theorem 1.1 does not seem to extend to show this.

• A tournament with no directed cycles is called transitive. Let tran(T ) be the number of
vertices in the largest transitive subtournament of T . It is well known [6, 18] that every n-
vertex tournament contains a transitive subtournament of order at least c log n, and this result
is tight apart from the value of the constant. Similarly, we call a tournament Ramsey if tran(T )
is very small compared to the number of vertices of T . Our technique can be used to prove the
following analogue of Theorem 1.1.

Theorem 3.2 Let T be a tournament on n vertices with tran(T ) ≤ C log n, for some con-
stant C. Then T contains a subtournament of order αn and β

√
n vertices of different outde-

grees, where α and β depend only on C.

Sketch of proof. To prove this result we need a version of Erdős-Szemerédi theorem for
tournaments. The version we use states that if there is an ordering of the vertices of the
tournament on n vertices with only d

(
n
2

)
edges going in the reverse direction to the ordering,

then
tran(T ) ≥ c1

1
d log(1/d)

log n.

To show this, consider a graph G on the same vertex set as T whose edges are the edges of
T that go in the reverse direction to the ordering. Then the density of the graph G is d, and
therefore Erdős-Szemerédi theorem guarantees existence of a homogeneous subgraph of G of
size c1

1
d log(1/d) log n. Since every homogeneous subgraph in G is a transitive subtournament

of T , this establishes Erdős-Szemerédi theorem for tournaments.

Define diverse tournaments in the same way as diverse graphs with neighborhoods replaced
by outneighborhoods. With this definition, the rest of the proof (Lemmas 2.2 and 2.3) carries
over to the case of tournaments. We omit the details. �
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