A point in many triangles
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Abstract

We give a simpler proof of the result of Boros and Fiiredi that for any finite set of points
in the plane in general position there is a point lying in 2/9 of all the triangles determined by
these points.

Introduction

Every set P of n points in R? in general position determines ( ) d-simplices. Let p be another

n
d+1
point in R% Let C(P,p) be the number of the simplices containing p. Boros and Fiiredi [2]
constructed a set P of n points in R? for which C(P,p) < %(g) + O(n?) for every point p. They
also proved that there is always a point p for which C(P,p) > %(g) + O(n?). Here we present a

new simpler proof of the existence of such a point p.

Proof

Let P be a set of n points in the plane. By the extension of a theorem of Buck and Buck [3] due
to Ceder [4] there are three concurrent lines that divide the plane into 6 parts each containing at
least n/6 — 1 points in its interior. Denote by p the point of intersection of the three lines. Every
choice of six points, one from each of the six parts, determines a hexagon containing the point p.
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Figure 1: a)p € ABE or p € BCE b)p € ACE and p € BDF

Among the (g) = 20 triangles determined by the vertices of the hexagon, at least 8 triangles
contain the point p. Indeed, from each of the six pairs of triangles situated as in Figure la we get
one triangle containing p. In addition, p is contained in both triangles of the Figure 1b. Therefore,
by double counting, the number of triangles containing p is at least

8(n/6—1)% 2(n
(n/6-13 9 (3) +0(").

For the sake of completeness we include a sketch of a proof of the modification of the theorem
of Buck and Buck that we used above.



Proposition 1. Let i be a finite measure absolutely continuous with respect to the Lebesgue measure
on R2. Then there are three concurrent lines that partition the plane into siz parts of equal measure.

The partition theorem for the finite set of point P follows by letting i be the restriction of the
Lebesgue measure to the union of tiny disks of equal size centered at the points of P. Since P is in
general position, none of the three lines passes through more than two of the disks.

Proof sketch. The given measure can be made into one which gives every open set a strictly positive
measure, and which differs little from the given one. Proving the result for the latter, and using
a compactness argument, one is through. Hence we can assume the property mentioned, and we
normalize the total measure of the plane to 1.

Let now u be a unit vector. There is a unique directed line L(u) pointing in the direction u and
cutting the plane in two parts of measure 1/2. For any point P on L(u) there B A
are six unique rays from P, denoted A(u, P), ..., F(u, P) in clockwise order,
splitting the plane in sectors of measure 1/6, with A(u, P) in the direction w.
Note that L(u) is the union of A(u, P) and D(u, P). When P moves along
L(u) in the direction u, the ray B(u, P) will turn counterclockwise in a con-
tinuous way, becoming orthogonal to L(u) at some point. As the clockwise
turning F(u, P) behaves in the same way, there will be a unique P*(u) such
that B(u, P*(u)) and E(u, P*(u)) form a line. E

The line L, the point P* and the six rays from P* clearly depend con-
tinuously on w. In particular the angle p(u) one must turn C(u, P*(u))  Figure 2: Sixrays
counterclockwise to complete F(u, P*) to a line varies continuously. But for any u, we have
C(—u, P*(—u)) = F(u, P*(u)), and hence ¢(—u) = —p(u). This shows that for some v the angle
¢(v) vanishes and the rays C(v, P*(v)) and F'(v, P*(v)) form a line. This finishes the proof. O

For no dimension higher than 2 the optimal bounds for C(P, p) are known. Barany [1] showed

that there is always a point p for which ¢(P,p) > (d +1)7¢ (dil) + O(n?).
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