Topological methods in combinatorics: on wedges and joins*

A pointed topological space is a pair (X, x_0) consisting of a topological space X and a point $x_0 \in X$. Wedge sum of two pointed spaces (X, x_0) and (Y, y_0) is a

pointed topological space (Z, z_0) where Z is the quotient space $Z = X \sqcup Y / \{x_0 = y_0\}$, where \sqcup denotes the disjoint union, and z_0 is the point obtained by identification of x_0 with y_0 . The wedge sum is written as $(X, x_0) \vee (Y, Y_0)$, or simply as $X \vee Y$. The latter notation is generally misleading, as we do not explicitly specify the basepoints x_0 and y_0 in X and Y. Choosing different basepoints x_0, y_0 in X and Y generally gives non-homeomorphic spaces for $X \lor Y$. However, there are two reasons why changing basepoints usually often does not matter. First, if (X, x_0) and (X, x'_0)

are two pointed spaces that differ only in the choice of the basepoint, and there is a homeomorphism $h: X \to X$ such that $h(x_0) = x'_0$, then changing the basepoint does not change the homeomorphism type of $X \vee Y$.

Second, if X is a simplicial complex and the points x_0 and x'_0 are connected by a path, then the homotopy type of $X \vee Y$ does not change with the change of the basepoint. Whereas it easy to convince oneself by imagining moving the contact Let $\phi: X \times [0,1] \to \{x_0\} \times [0,1] \cup X \times \{0\}$ be the retraction constructed in Lemma 1. point between X and Y along the path connecting x_0 and x'_0 , the actual proof Then ϕ induces the map $\Phi: W \to W_0$ given by requires more, since the result is false if X is an arbitrary topological space. To prove this, we need the property of geometric simplicial complexes, which says that we can extend a homotopy of subcomplex to the full complex.

Definition. Suppose X is a topological space, and A is a subspace of X. Then the pair (X, A) has homotopy extension property if for every space Y and every map $f: X \to Y$ and a homotopy $\overline{F}: A \times [0,1] \to Y$ satisfying $\overline{F}(\cdot,0) = f|_A$ there is an extension of \overline{F} to a homotopy $F: X \times [0,1] \to Y$ satisfying $F(\cdot,0) = f$.

Lemma 1. If L is a simplicial complex, and L' is a subcomplex of L. Then the pair (|L|, |L'|) has the homotopy extension property.

Proof. It suffices to deal with the case when $L \setminus L'$ consists of a single simplex. Proposition 3. Suppose L is a simplicial complex, and L' is a subcomplex. Suppose Indeed, we can then extend to simplices in $L \setminus L'$ one at a time starting from the simplices of the smallest dimension and working upward.

So, let Δ be unique simplex in $L \setminus |L'|$. Let $K = (\partial \Delta \times [0,1]) \cup (\Delta \times \{0\})$. By the assumption, F is defined on |K| Think of $|\Delta|$ as a geometric simplex living in \mathbb{R}^n with the centre at the origin. Then $|\Delta| \times [0,1]$ lives in $\mathbb{R}^n \times \mathbb{R}$. For each point $x \in |\Delta| \times [0,1]$ let r(x) be the $\bullet x$ intersection point of |K| with the ray originating at $\vec{0} \times 2 \in \mathbb{R}^n \times \mathbb{R}$ and going through x. Then we can define the desired extension by r(x) $F(x) = \overline{F}(r(x)).$

Note that the proof of the Lemma 1 gives more, namely that the homotopy of $|L \times [0,1]|$ and $|L' \times [0,1] \cup L \times \{0\}|$. Indeed, composition of maps r constructed for each simplex of $L \setminus L'$ gives a retraction map $\phi \colon |L \times [0,1]| \to |L' \times [0,1] \cup L \times \{0\}|$.

Proposition 2. Suppose (X, x_0) is a pointed simplical complex, Y a topological space, and $y_0, y_1 \in Y$ are two points in the same path-connected component of Y. Let Z_0 be the underlying topological space of $(X, x_0) \vee (Y, y_0)$, and let Z_1 be the underlying topological space of $(X, x_0) \vee (Y, y_1)$. Then $Z \simeq Z'$.

Proof. Since y_0, y'_0 are in the same path-connected component, there is a function $f: \{x_0\} \times [0,1] \to Y$ such that $f(x_0,0) = y_0$ and $f(x_0,1) = y_1$. Define the equivalence relation \approx on $(X \times [0, 1]) \sqcup Y$ by

$$(x,t) \approx y$$
 if and only if $x = x_0$, and $f(x_0,t) = y$.

Introduce the spaces

$$W = (X \times [0,1]) \sqcup Y / \approx,$$

$$W_0 = (\{x_0\} \times [0,1] \cup X \times \{0\}) \sqcup Y / \approx,$$

$$W_1 = (\{x_0\} \times [0,1] \cup X \times \{1\}) \sqcup Y / \approx,$$

$$\begin{aligned} (x,t) &\mapsto \phi(x,t) & (x,t) \in X \times [0,1] \\ y &\mapsto y & y \in Y. \end{aligned}$$

The map Φ is a retraction of W onto W_0 . So, W_0 and W are homotopic. Since W_0 is homeomorphic to Z_0 , it follows that W and Z_0 are homotopic. Similarly for W and Z_1 . As, Z_0 and Z_1 are homotopic to the same space, the proof is complete. \Box

Another useful consequence of homotopy extension property is that the homotopy type is invariant under quotients by contractible subcomplexes:

further that L' is contractible (i.e., homotopy equivalent to a one-point space). Then |L|/|L'| is homotopy equivalent to L.

^{*}These notes are from http://www.borisbukh.org/TopCombLent12/notes_wedgejoin.pdf.

Proof. Let $\overline{F} : |L'| \times [0,1] \to |L'|$ be the contraction, i.e., $\overline{F}(x,0) = x$ for all $x \in |L'|$ and $\overline{F}(\cdot,1) = p$ for some $p \in |L'|$. The map \overline{F} naturally to $|L'| \times [0,1] \cup L \times \{0\} \to |L|$ by putting $\overline{F}(x,0) = x$ for all $x \in |L|$. By Lemma 1 there is an extension of \overline{F} to $F : |L| \times [0,1] \to |L'|$. Let $f : |L|/|L'| \to |L|$ be given by

$$f(x) = \begin{cases} F(x,1) & \text{if } x \neq [L'] \\ p & \text{if } x = [L'] \end{cases}$$

Then f is a continuous. Since $\pi \circ f = \mathrm{id}_{|L|/|L'|}$ and $f \circ \pi \simeq \mathrm{id}_{|L|}$ via the homotopy F, it follows that |L|/|L'| and |L| are homotopic. \Box

A reduced join of pointed space (X, x_0) and (Y, y_0) is the space

$$X *' Y = (X * Y) / (\{x_0\} * Y \cup X * \{y_0\}).$$

Lemma 4. If (X, x_0) and (Y, y_0) are pointed simplicial complexes, then $|X| *' |Y| \simeq |X * Y|$.

Proof. The space $A = \{x_0\} * Y$ is contractible by pushing all the points towards x_0 . Similarly for $B = X \times \{y_0\}$. Both $A = \{x_0\} * Y$ and $B = X * \{y_0\}$ are contractible subcomplexes of X * Y. Since $A \cap B = \{x_0\} * \{y_0\}$ is contractible, it follows that $A \cup B$ is contractible (exercise!). Hence, the lemma follows from Proposition 3. \Box

We can make reduced join X *' Y into a pointed topological space by declaring $[\{x_0\} * Y \cup X * \{y_0\}]$ to be the basepoint. With this in mind, the following lemma is just an exercise in definition-chasing.

Lemma 5. Suppose (X, x_0) , (Y, Y_0) and (Z, z_0) are pointed topological spaces. Then the spaces $(X \lor Y) \ast' Z$ and $(X \ast' Z) \lor (Y \ast' Z)$ are homeomorphic.

Proof. Both spaces are equal to

$$[\lambda w \oplus (1-\lambda)y : w \in X \sqcup Y]/(\{x_0, y_0\} * Z \cup (X \sqcup Y) * \{z_0\}).$$

Corollary 6. If (X, x_0) , (Y, y_0) and (Z, z_0) are pointed simplicial complexes, then $(X \vee Y) * Z \simeq (X * Z) \vee (Y * Z)$.

The Corollary 6 reduces the computation of the join of discrete spaces to a mindless manipulation:

Theorem 7. Let $n \ge 1$ and $m \ge 2$ be integers. Suppose K = [m] is an m-point discrete space. Then $K^{*(n+1)}$ is a wedge of $(m-1)^{n+1}$ n-spheres.

Proof. We can write [m] as a wedge of m-1 two-point spaces $[m] = [2] \lor \cdots \lor [2]$. Since $[2]^{*(n+1)} \cong S^n$, the result follows from Corollary 6.