
Topological methods in combinatorics: on wedges

and joins∗

A pointed topological space is a pair (X,x0) consisting of a topological space X
and a point x0 ∈ X. Wedge sum of two pointed spaces (X,x0) and (Y, y0) is a
pointed topological space (Z, z0) where Z is the quotient
space Z = X t Y/{x0 = y0}, where t denotes the disjoint
union, and z0 is the point obtained by identification of x0

with y0. The wedge sum is written as (X,x0) ∨ (Y, Y0), or

Wedge of five circles.

simply as X ∨Y . The latter notation is generally mislead-
ing, as we do not explicitly specify the basepoints x0 and
y0 in X and Y . Choosing different basepoints x0, y0 in X
and Y generally gives non-homeomorphic spaces for X∨Y .
However, there are two reasons why changing basepoints
usually often does not matter. First, if (X,x0) and (X,x′

0)
are two pointed spaces that differ only in the choice of the basepoint, and there is
a homeomorphism h : X → X such that h(x0) = x′

0, then changing the basepoint
does not change the homeomorphism type of X ∨ Y .

Second, if X is a simplicial complex and the points x0 and x′
0 are connected by

a path, then the homotopy type of X ∨ Y does not change with the change of the
basepoint. Whereas it easy to convince oneself by imagining moving the contact
point between X and Y along the path connecting x0 and x′

0, the actual proof
requires more, since the result is false if X is an arbitrary topological space. To
prove this, we need the property of geometric simplicial complexes, which says that
we can extend a homotopy of subcomplex to the full complex.

Definition. Suppose X is a topological space, and A is a subspace of X. Then the
pair (X,A) has homotopy extension property if for every space Y and every map
f : X → Y and a homotopy F̄ : A × [0, 1] → Y satisfying F̄ (·, 0) = f |A there is an
extension of F̄ to a homotopy F : X × [0, 1] → Y satisfying F (·, 0) = f .

Lemma 1. If L is a simplicial complex, and L′ is a subcomplex of L. Then the
pair (|L|, |L′|) has the homotopy extension property.

Proof. It suffices to deal with the case when L \ L′ consists of a single simplex.
Indeed, we can then extend to simplices in L \ L′ one at a time starting from the
simplices of the smallest dimension and working upward.

∗These notes are from http://www.borisbukh.org/TopCombLent12/notes wedgejoin.pdf.
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So, let ∆ be unique simplex in L \ |L′|. Let K = (∂∆× [0, 1]) ∪ (∆× {0}). By
the assumption, F̄ is defined on |K| Think of |∆| as a geometric
simplex living in Rn with the centre at the origin. Then |∆|× [0, 1]
lives in Rn × R. For each point x ∈ |∆| × [0, 1] let r(x) be the
intersection point of |K| with the ray originating at ~0×2 ∈ Rn×R
and going through x. Then we can define the desired extension by

x

~0× 2

r(x)
F (x) = F̄ (r(x)).

Note that the proof of the Lemma 1 gives more, namely that the homotopy of
|L× [0, 1]| and |L′× [0, 1]∪L×{0}|. Indeed, composition of maps r constructed for
each simplex of L \L′ gives a retraction map φ : |L× [0, 1]| → |L′ × [0, 1]∪L×{0}|.

Proposition 2. Suppose (X,x0) is a pointed simplical complex, Y a topological
space, and y0, y1 ∈ Y are two points in the same path-connected component of Y .
Let Z0 be the underlying topological space of (X,x0) ∨ (Y, y0), and let Z1 be the
underlying topological space of (X,x0) ∨ (Y, y1). Then Z ' Z ′.

Proof. Since y0, y
′
0 are in the same path-connected component, there is a function

f : {x0} × [0, 1] → Y such that f(x0, 0) = y0 and f(x0, 1) = y1. Define the equiva-
lence relation ≈ on (X × [0, 1]) t Y by

(x, t) ≈ y if and only if x = x0, and f(x0, t) = y.

Introduce the spaces

W = (X × [0, 1]) t Y/ ≈,

W0 = ({x0} × [0, 1] ∪X × {0}) t Y/ ≈,

W1 = ({x0} × [0, 1] ∪X × {1}) t Y/ ≈,

Let φ : X× [0, 1] → {x0}× [0, 1]∪X×{0} be the retraction constructed in Lemma 1.
Then φ induces the map Φ: W → W0 given by

(x, t) 7→ φ(x, t) (x, t) ∈ X × [0, 1]

y 7→ y y ∈ Y.

The map Φ is a retraction of W onto W0. So, W0 and W are homotopic. Since W0

is homeomorphic to Z0, it follows that W and Z0 are homotopic. Similarly for W
and Z1. As, Z0 and Z1 are homotopic to the same space, the proof is complete.

Another useful consequence of homotopy extension property is that the homo-
topy type is invariant under quotients by contractible subcomplexes:

Proposition 3. Suppose L is a simplicial complex, and L′ is a subcomplex. Suppose
further that L′ is contractible (i.e., homotopy equivalent to a one-point space). Then
|L|/|L′| is homotopy equivalent to L.
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Proof. Let F̄ : |L′|× [0, 1] → |L′| be the contraction, i.e., F̄ (x, 0) = x for all x ∈ |L′|
and F̄ (·, 1) = p for some p ∈ |L′|. The map F̄ naturally to |L′|×[0, 1]∪L×{0} → |L|
by putting F̄ (x, 0) = x for all x ∈ |L|. By Lemma 1 there is an extension of F̄ to
F : |L| × [0, 1] → |L′|. Let f : |L|/|L′| → |L| be given by

f(x) =

{
F (x, 1) if x 6= [L′],

p if x = [L′].

Then f is a continuous. Since π ◦ f = id|L|/|L′| and f ◦ π ' id|L| via the homotopy
F , it follows that |L|/|L′| and |L| are homotopic.

A reduced join of pointed space (X,x0) and (Y, y0) is the space

X ∗′ Y = (X ∗ Y )/
(
{x0} ∗ Y ∪X ∗ {y0}

)
.

Lemma 4. If (X,x0) and (Y, y0) are pointed simplicial complexes, then |X|∗′ |Y | '
|X ∗ Y |.

Proof. The space A = {x0}∗Y is contractible by pushing all the points towards x0.
Similarly for B = X × {y0}. Both A = {x0} ∗ Y and B = X ∗ {y0} are contractible
subcomplexes of X ∗ Y . Since A ∩ B = {x0} ∗ {y0} is contractible, it follows that
A∪B is contractible (exercise!). Hence, the lemma follows from Proposition 3.

We can make reduced join X ∗′ Y into a pointed topological space by declaring
[{x0} ∗ Y ∪X ∗ {y0}] to be the basepoint. With this in mind, the following lemma
is just an exercise in definition-chasing.

Lemma 5. Suppose (X,x0), (Y, Y0) and (Z, z0) are pointed topological spaces. Then
the spaces (X ∨ Y ) ∗′ Z and (X ∗′ Z) ∨ (Y ∗′ Z) are homeomorphic.

Proof. Both spaces are equal to

{λw ⊕ (1− λ)y : w ∈ X t Y }/
(
{x0, y0} ∗ Z ∪ (X t Y ) ∗ {z0}

)
.

Corollary 6. If (X,x0), (Y, y0) and (Z, z0) are pointed simplicial complexes, then
(X ∨ Y ) ∗ Z ' (X ∗ Z) ∨ (Y ∗ Z).

The Corollary 6 reduces the computation of the join of discrete spaces to a
mindless manipulation:

Theorem 7. Let n ≥ 1 and m ≥ 2 be integers. Suppose K = [m] is an m-point
discrete space. Then K∗(n+1) is a wedge of (m− 1)n+1 n-spheres.

Proof. We can write [m] as a wedge of m− 1 two-point spaces [m] = [2] ∨ · · · ∨ [2].
Since [2]∗(n+1) ∼= Sn, the result follows from Corollary 6.
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