
Matrix Theory:

Faster multiplication∗

You are thrown into a prison, and told by the prison warden that you will be freed
once you compute the product M~a, where M is an n-by-n matrix, and ~a is a vector in
Rn. What is the fastest way to gain freedom?

The obvious way is to compute the product using the formula(
M~a)i =

∑
k

mi,kak for i = 1, . . . , n.

This requires n2 multiplications and approximately the same number of additions. Since
multiplication is harder than addition, the bulk of our work will consist of the n2 mul-
tiplications. Can we do the computation using fewer than n2 operations? No, because
each entry of the matrix M is important, and there are n2 of them.

What if the warden was more evil, and wanted you to compute M~a1,M~a2, . . . ,M~an,
i.e., not just one, but n different products! What would you do? Of course, you could
compute each of M~a1, . . . ,M~an is turn, for the total of n · n2 = n3 multiplications.
However, it turns out that one can do away with fewer multiplications.

Note that the problem is really to compute the product MA where A is the n-by-n
matrix obtained by concatenating the columns ~a1, . . . ,~an. Let’s pretend that n is even for
simplicity1, which allows us to divide each of the matrices M and A into four n/2-by-n/2
submatrices

M =

(
M1,1 M1,2

M2,1 M2,2

)
A =

(
A1,1 A1,2

A2,1 A2,2

)
.

The key insight is that to multiply M and A, one can pretend that M and A are 2-by-2
matrices with entries from Mn/2,n/2 and use the usual rules of matrix multiplication (can
you see why?). In other words,

MA =

(
M1,1A1,1 + M1,2A2,1 M1,1A1,2 + M1,2A2,2

M2,1A1,1 + M2,2A2,1 M2,1A1,2 + M2,2A2,2

)
.

This way our task reduces to 8 multiplications of n/2-by-n/2 matrices, and some
additions. As we know from the above, the multiplication of n/2-by-n/2 matrices can be
done using (n/2)3 multiplications, and so the total number of multiplications using this
method is 8(n/2)3 = n3. So, this method appears to be no better than the naive method.

However, it is possible to multiply two 2-by-2 matrices using only 7 multiplications!
Instead of writings the cumbersome formula with 7 multiplications, we shall first look at a

∗These notes are available from the course webpage, and directly from http://www.borisbukh.org/

MatrixTheory13/notes_fast_multiplication.pdf
1Of course, the prison warden is evil, and so he will choose n to be odd. Can you see what to do then?

1

http://www.borisbukh.org/MatrixTheory13/notes_fast_multiplication.pdf
http://www.borisbukh.org/MatrixTheory13/notes_fast_multiplication.pdf


21-301: Matrix Theory Faster multiplication notes

simpler, but related problem: integer multiplication. Imagine that instead of multiplying
matrices, the warden asked you to multiply to n-digit integers, A and B. The obvious
multiplication method would require multiplying each digit of A by each digit of B, and
then adding the results; that would take n2 multiplications. A faster way splits A and B
into two n/2-digit long numbers

A = A1A0 and B = B1B0,

where the line over A1A0 and B1B0 signifies concatenation, i.e.,

A = A110n/2 + A0 and B = B110n/2 + B0.

The product of A and B is then

AB = A1B110n + (A0B1 + A1B0)10n/2 + A0B0.

We have reduced multiplication of two n-digit numbers to 4 multiplications of n/2-digit
numbers. Since we can multiply n/2-digit numbers using (n/2)2 ordinary multiplications,
this gives us a method to multiply the n-digit numbers using 4(n/2)2 = n2 multiplications,
which is no better than what we already could do. However, we can compute AB using
only three multiplications. Namely, we compute

A0B0,

A1B1,

(A0 + A1)(B0 + B1).

To obtain A0B1 + A1B0 we just do a few extra additions,

A0B1 + A1B0 = (A0 + A1)(B0 + B1) −A0B0 −A1B1.

How many multiplication do we do with this method? Computation of A0B0 and
A1B1 each takes (n/2)2 multiplications, whereas (A0+A1)(B0+B1) might take (n/2+1)2

multiplication since A0 + A1 and B0 + B1 might have as many as n/2 + 1 digits. That
adds up to 2(n/2)2 +(n/2+1)2 = 3

4n
2 +n+1 multiplications! This method is thus faster

than then the usual method for large n. For even greater speed-up, one can use this
method to compute products of n/2-digit numbers instead of using the slower algorithm.

So, what about the evil warden and product of matrices MA? Here are the 7 products
that we compute:

P1 = (M1,1 + M2,2)(A1,1 + A2,2)

P2 = (M2,1 + M2,2)A1,1

P3 = M1,1(A1,2 −A2,2)

P4 = M2,2(A2,1 −A1,1)

P5 = (M1,1 + M1,2)A2,2

P6 = (M2,1 + M1,1)(A1,1 + A1,2)

P7 = (M1,2 −M2,2)(A2,1 + A2,2).

2



21-301: Matrix Theory Faster multiplication notes

Then

MA =

(
P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 − P2 + P3 + P6

)
.

Historical remarks. The 3-multiplication method for the integer multiplication is
due to Anatolii Karatsuba. It was invented in 1960. While it might seem like an eternity
ago to most of us, this means that for the first few thousand years humans used an inferior
way to multiply integers! The 7-multiplication method is due to Volker Strassen from
1969.

The idea of Karatsuba has been extended, and there is now an algorithm to multiply
two n-digit numbers that takes almost n log n operations for very large values of n. The
algorithm is based on the linear transformation called Fourier transform, whose descrip-
tion is beyond the scope of this course. For matrices, the ideas based on non-commutative
Fourier transform lead to the fastest known algorithms (for large n), but it is still not
known if it is possible to multiply two n-by-n matrices in as few as n2+c operations for
any desired value of c > 0.

3


