1. Let $T: V \to V$ be a linear transformation from a vector space V into itself. Let $\vec{v} \in V$ be a vector such that $T^m(\vec{v}) = \vec{0}$ for some positive integer m, but such that $T^{m-1}(\vec{v})$ is non-zero. What is the dimension of $\text{span}\{\vec{v}, T(\vec{v}), T^2(\vec{v}), \ldots, T^{m-1}(\vec{v})\}$?

2. Suppose A is a matrix, and $A\vec{x} = \vec{0}$ has unique solution. Prove that $A^T\vec{x} = \vec{b}$ has a solution for every possible right side \vec{b}.

3. Suppose $S: V \to V$ and $T: V \to V$ are linear transformation from a finite-dimensional vector space V into itself.

 (a) Is $\text{rank}(ST) = \text{rank}(TS)$ always true? Justify.

 (b) Prove that $\text{rank}(ST) \geq \text{rank}(S) + \text{rank}(T) - \text{dim} V$.

4. Suppose $T: V \to V$ is a linear transformation from a finite-dimensional linear space into itself. Show that the following two assertions are equivalent:

 (a) $V = \text{Ran}(T) + \text{Ker}(T)$.

 (b) $\text{Ran}(T) \cap \text{Ker}(T) = \{\vec{0}\}$.

5. Suppose $T: V \to V$ is a linear transformation from a finite-dimensional linear space into itself.

 (a) Show that $\text{rank}(T) = \text{rank}(T^2)$ implies that $\text{Ran}(T) \cap \text{Ker}(T) = \{\vec{0}\}$.

 (b) Prove that there is a k such that $\text{Ran}(T^k) \cap \text{Ker}(T^k) = \{\vec{0}\}$.

6. (Bonus problem) Suppose $T_1, T_2, T_3: V \to V$ are three linear transformations such that $\text{rank}(T_1 + T_2 + T_3) = 2$. Does it necessarily follow that one of $\text{rank}(T_1 + T_2), \text{rank}(T_1 + T_3), \text{rank}(T_2 + T_3)$ must be at least 2?

*This homework is from http://www.borisbukh.org/MatrixTheory13/hw5.pdf