Matrix Theory: homework #4* Due 25 September 2013, at start of class

- 1. Suppose V is a subspace of \mathbb{R}^n . Show that there is a subspace U of \mathbb{R}^n such that $V \cap U = \{\vec{0}\}$ and $U + V = \mathbb{R}^n$. (For notation U + V, see problem 5 on homework #3.)
- 2. Let $T: V \to W$ be a linear transformation between finite-dimensional spaces, and suppose $T\vec{x} = \vec{0}$ has a unique solution. Show that T is left-invertible.
- 3. (a) Suppose $\{\vec{v}_1, \ldots, \vec{v}_m\}$ is a set of linearly independent vectors in a vector space V, and suppose that the set $\{\vec{w}_1, \ldots, \vec{w}_n\}$ is a basis for V. Show that if n > m, then there is an i such that the set $\vec{v}_1, \ldots, \vec{v}_m, \vec{w}_i$ is linearly independent.
 - (b) Use (a) to deduce that if $\{\vec{v}_1, \ldots, \vec{v}_m\}$ is linearly independent, and the set $\{\vec{w}_1, \ldots, \vec{w}_n\}$ is a basis, then one can find n-m vectors among $\vec{w}_1, \ldots, \vec{w}_n$ such that these vectors together with $\vec{v}_1, \ldots, \vec{v}_m$ form a basis.
- 4. If $f(t) = a_N t^N + \cdots + a_1 t + a_0$ is a polynomial of degree N, and $B \in M_{n,n}$ is a square matrix, then f(B) is defined to be $f(B) = a_N B^N + \cdots + a_1 B + a_0 I$, where B^p is the p'th power of B and I is the identity matrix.

Prove that for every matrix $B \in M_{n,n}$ there is a non-zero polynomial f of degree at most n^2 such that f(B) = 0 (the zero matrix).

- 5. (Bonus problem) Suppose V_1, \ldots, V_n are 2-dimensional subspaces of a vector space V. Suppose further that every two of these subspaces intersect non-trivially, i.e., $V_i \cap V_j \neq \{\vec{0}\}$ for all i, j. Prove that at least one of the following two statements must be true about V_1, \ldots, V_n :
 - (a) There is a subspace U of V of dimension at most 3 such that U contains each of V_1, \ldots, V_n .
 - (b) There is a subspace W of V of dimension 1 such that each of V_1, \ldots, V_n contains W.

^{*}This homework is from http://www.borisbukh.org/MatrixTheory13/hw4.pdf.