
Geometric combinatorics: supplementary notes 3∗

If (X,F) is a set family then the signed discrepancy of S ∈ F with respect
to the colouring χ : X → {−1,+1} is χ(S) =

∑
x∈S χ(x). The function χ is

thought of as a colouring into two colours, normally called red and blue. The
value χ(S) is then a measure of disbalance between two colours. The com-
binatorial discrepancy (or simply discrepancy) of (X,F) with respect to χ is
then disc(F , χ) = maxS∈F |χ(S)|, and the combinatorial discrepancy of (X,F)
is disc(F) = minχ disc(F , χ). Finally, since we are primarily interested in fami-
lies F that are infinite (ellipsoids, convex sets, etc), we introduce the notation
disc(n,F) = max|A|=n disc(F|A). One can bound the geometric discrepancy by
combinatorial discrepancy:

Theorem 1. Let F be a family of Lebesgue-measurable sets in [0, 1]d. Suppose
disc(n,F) ≤ f(n) for all n. Assume that the following conditions are satisfied:

1. f(2n) ≤ (2− δ)f(n) for some constant δ > 0,

2. D(n,F) = o(n),

3. [0, 1]d ∈ F .

Then
D(n,F) = O(f(n)).

The conditions (1)-(3) above are purely technical. Among the conditions (1)
and (2), the condition (1) is stronger: morally it says that disc(n,F) = O(n1−δ)
for some fixed δ > 0. The bounds on discrepancy of interesting geometrically-
defined set families all satisfy this condition. The condition (3) is for convenience
only, and can be relaxed.

Lemma 2. Let (X,F) be a set system.on |X| = 2n points, and X ∈ F . Then
there is an n-point subset Y ⊂ X such that∣∣∣∣ |Y ∩ S|

|Y |
− |S|
|X|

∣∣∣∣ ≤ disc(F)
|X|

for every S ∈ F .
∗These notes are from http://www.borisbukh.org/GeoCombEaster10/suppnotes3.pdf.
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Proof. Pick a colouring χ : X → {−1,+1} satisfying disc(F) = disc(χ,F). Let
Y ′ be the larger of the two colour classes χ−1(−1) and χ−1(+1). Let Y ⊂ Y ′

be any subset of exactly n points. If S ∈ F , then∣∣2|Y ′ ∩ S| − |S|
∣∣ =

∣∣|Y ′ ∩ S| − |S \ Y ′|
∣∣ = |χ(S)| ≤ disc(F).

Since X ∈ F , this in particular implies that |Y ′| − n/2 ≤ 1
2 disc(F). Thus, for

every S ∈ F ∣∣|Y ∩ S| − 1
2 |S|

∣∣ ≤ |Y ′ \ Y |+
∣∣|Y ′ ∩ S| − 1

2 |S|
∣∣

≤ 1
2 disc(F) + 1

2 disc(F).

Proof. By condition (2) there is a sufficiently large integer k and a set P0 of 2kn
points such that

D(P0,F)
|P0|

≤ f(n)
n

.

Starting with P0 we shall build a sequence of sets P0, P1, . . . , Pk that are of size
|Pi| = 2k−in, where each subsequent set Pi+1 is a good approximation to the
preceding set Pi with respect to F . Namely, the preceding lemma applied to
the set system (Pi,F|Pi) yields existence of set Pi+1 that satisfies∣∣∣∣ |Pi ∩ S|

|Pi|
− |Pi+1 ∩ S|

|Pi+1|

∣∣∣∣ ≤ f(2k−in)
2k−in

.

Therefore, the condition (1) of the theorem then implies∣∣∣∣ |Pk ∩ S|
|Pk|

− |P0 ∩ S|
|P0|

∣∣∣∣ ≤ ∑
i

f(2k−in)
2k−in

≤ f(n)
n

(
1 +

2− δ

2
+

(2− δ)2

22
+ · · ·

)
= O

(
f(n)

n

)
.

By the choice of P0 the geometric discrepancy of P with respect to any S ∈ F
is ∣∣∣∣ |P0 ∩ S|

|P0|
− vol(S)|P0|

∣∣∣∣ ≤ f(n)
n

.

The theorem then follows from the triangle inequality.

If there is a trivial upper bound for combinatorial discrepancy, the following
bound has the best claim to that title, for it is the bound that holds for almost
every choice of the colouring function χ.

Theorem 3. Let (X,F) be a set system. Let s = maxS∈F |S|. Then with
probability at least 1/2 a colouring χ : S → {−1,+1} that is chosen uniformly
at random from the set of all 2|S| two-colourings of S has discrepancy

disc(F , χ) ≤
√

2s log(4|F|).
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Proof. For a set S ∈ F the random variable χ(S) is distributed according to
the binomial distribution. By Chernoff’s large deviation inequality

Pr[|χ(S)| > λ
√
|S|] < 2 exp(−λ2/2).

Let λ =
√

2 log(4|F|). Then the union bound implies

Pr[disc(F , χ) > λ
√

s] = Pr[∃S ∈ F , |χ(S)| > λ
√
|S|] ≤

∑
S∈F

Pr[|S| > λ
√
|S|]

≤
∑
S∈F

Pr[|S| > λ
√

s] < |F| · 2 exp(−λ2/2) =
1
2
.

As many families of geometric origin have bounded VC-dimension, the fol-
lowing result, when taken jointly with Theorem 1 above, supplies a non-trivial
upper bound for their geometric discrepancy:

Theorem 4. Let (X,F) be a set family of VC-dimension d on the ground set
of size |X| = n. Then

disc(F) ≤ n
1
2−

1
2d logcd n.

Let S1∆S2 = (S1 \ S2) ∪ (S1 \ S2) be the symmetric difference of S1 and
S2. A family F of sets is said to be δ-separated if for every pair of distinct
sets S1, S2 ∈ F the size of their symmetric difference is |S1∆S2| ≥ δ. The size
of a δ-separated family need to be small in general. Indeed, it is not hard to
derive from Chernoff’s inequality that a random family of 2n/1000 subsets of
an n-element set is (n/1000)-separated. For sets of bounded VC-dimension the
situation is much different.

Lemma 5. Let (X,F) be a δ-separated set family of VC-dimension d on the
ground set of size |X| = n. Then

|F| ≤ cd(n/δ)d logd(n/δ).

Proof. Let r = n/δ. By problem #1 from the third example sheet the VC-
dimension of the family F ′ = {S1∆S2 : S1, S2 ∈ F} is bounded solely in terms
of d. Thus there is an 1

r -net N for F ′ of size |N | = c′dr log r. Since for every
S1, S2 ∈ F , the set S1∆S2 contains a point of N , that point of N is in precisely
one of S1 and S2. In particular, S1 ∩N 6= S2 ∩N . Therefore,

|F| ≤ |F|N | ≤ g(d, |N |) = O(|N |d) = O(rd logd r).

A partial colouring of a set X is a function χ : X → {−1, 0,+1}. In addition
to the familiar colours −1 and +1, the zero signifies an uncoloured element.
The definition of χ(S) =

∑
x∈S χ(x) remains unchanged, and is still called

discrepancy of S with respect to χ. The advantage of partial colourings is
that they can be used to build a complete colouring in stages. First, a partial
colouring with small discrepancy is found. Then task becomes of finding a
small-discrepancy colouring of the uncoloured elements. The procedure can
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be repeated with several partial colourings combined together in a single total
colouring. Thus, the partial colourings permit us to break the difficult task of
finding a total colouring into several easier tasks of finding partial colourings.

Lemma 6. Let X be an n-point set that is a common ground set for the set
systems (X,F) and (X,M). Let s = maxM∈M|M |. Suppose∏(

2|F |+ 1
)
≤ 2n/5−1.

Then there exists a partial colouring χ : X → {−1, 0,+1} that leaves at most
(9/10)n points uncoloured such that disc(F , χ) = 0 and disc(M, χ) ≤

√
2s log(4|M|).

Proof. Consider the family C of all total colourings χ : X → {−1,+1} for which
disc(M, χ) ≤

√
2s log(4|M|). By theorem 3 the number of colourings in C is

at least 1
2 · 2

|X| = 2n−1. For each χ ∈ C consider the |F|-dimensional vector
d(χ) = (χ(F ))F∈F . Since |χ(F )| ≤ |F |, the range of d is a set with at most∏(

2|F |+ 1
)
≤ 2n/5−1

elements. By the pigeonhole principle, there is a d0 such that C′ = {χ ∈ C :
d(χ) = d0} contains at least 24n/5 colourings. Fix such a d0, and an arbitrary
χ0 ∈ C′. There are at most

N =
∑

i≤n/10

(
n

i

)
colourings χ ∈ C′ that differ from χ0 in fewer than n/10 positions. Since N <
24n/5 ≤ |C′| there is a χ1 ∈ C′ that differs from χ0 in more than n/10 positions.
The colouring χ = 1

2 (χ0 − χ1) then fulfills the conclusion of the theorem.

Proof of theorem 4. Let δ be a parameter to be chosen later. Let F ′ ⊂ F be
a maximal δ-separated subfamily of F . By lemma 5 the size of F ′ is only
|F ′| ≤ (n/δ)d logd(n/δ). Let

M = {F \ F ′ : F ∈ F , F ′ ∈ F ′, |F∆F ′| ≤ δ}
∪ {F ′ \ F : F ∈ F , F ′ ∈ F ′, |F∆F ′| ≤ δ}.

Since F ′ is a maximal δ-separated family every F ∈ F can be expressed as
F = (F ′ ∪ A) \ B where F ′ ∈ F ′ and A,B ∈ M, with three sets A,B and
F ′ \B = F \A being disjoint. If δ = n1−1/d logc′

d n for an appropriate c′d then∏
F∈F ′

(2|F |+ 1) ≤ (2n + 1)|F
′| ≤ 2n/5−1,

and by the preceding lemma, there is a partial colouring χ1 : X → {−1, 0,+1}
of zero discrepancy on F and discrepancy at most

√
2δ log(4|M|) on M. Since

|M| ≤ g(VC-dim(M), n) = O(nd), it follows that

disc(M, χ1) = O(
√

δ log n) = O(n
1
2−

1
2d logcd n).
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Note that for every F ∈ F that is written as F = (F ′ ∪ A) \ B we have
χ1(F ) = χ1(F ′) + χ1(A)− χ1(B). Thus

disc(F , χ1) ≤ cn
1
2−

1
2d logcd n.

The colouring χ1 leaves at most (9/10)n points uncoloured. One can then find
a partial colouring χ2 that colours (1/10)n of these remaining points and has
discrepancy only

disc(F , χ2) ≤ c( 9
10n)

1
2−

1
2d logcd n.

leaving only (9/10)2n points uncoloured. Repeating this process, yields a total
colouring that colours every point of X and has discrepancy at most∑

i

c( 9i

10i n)
1
2−

1
2d logcd n,

as claimed.
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