Geometric combinatorics: supplementary notes 2*

If P ¢ R? is a finite point set, then P’ C P is a weak e-net for P with
respect to the convex sets if for every convex set C' C R? containing at least
¢|P| points of P, we have P’ N C # 0.

Theorem 1 (Weak e-net theorem). If P C R? is finite, then there is a weak
(1/r)-net P’ for P with respect to convex sets of size |P’| < f(r,d).

Lemma 2. If P C R? is an n-point set, then there is a hyperplane h that
partitions P into two sets, each of size at least n/2 — 1.

Proof. For a generic direction v, every hyperplane with normal v contains at
most one point of P. Pick such a direction v, and a hyperplane h normal to v so
that P is on one side of h. Slide h towards P in direction v. As the hyperplane
slides, the number of points of P in the two parts changes by at most one at a
time. O

Proof of the weak e-net theorem. Proof is by induction on d and [log, 3 7]. The
base case d = 1 is easy, whereas the base case 7 = 1 is trivial. Thus, suppose
d > 2. Let h be a hyperplane separating P; and P, into two sets of size at
least n/2 — 1 each as above. Let P; and P; be weak (4/3r)-nets for P; and
P, respectively. Note that if C' is a convex set satisfying C N P{ = () and
|C N P|>(1/r)n, then

IC NPy > [CNP|— (4/37)|P] > (1/r)n — (4/3r)(n/2 + 1) > (1/3r)n — 2.

Similarly, C N Py = 0 and |C N P| > (1/r)n imply |C N Py| > (1/3r)n — 2.
For points p1,ps € R? denote by [a, b] the line segment connecting p; and pa.
Let F = {[p1,p2] : p1 € P1, p2 € P2}, and P = {sNh : s € F}. Note that
CN(P{UP)) =0 and |CNP|> (1/r)n together imply that C' contains at least
((1/3r)n — 2)? line segments from F, and hence the same number of points of

P. By the induction on d there is a weak (1/10r?)-net P’ for P of size at most
f(1072,d — 1). The set Pj U P5U P’ is thus a weak (1/r)-net whenever

1 ((1/3r)n—2)2 _ (1/97%)n? — O(n/r)
10r2 = |]5| = n?/4 ’

Thus P} U P, U P’ may fail to be a weak (1/r)-net for P only if n = O(r), in
which case P itself is a weak (1/r)-net of size depending only on r. O

*These notes are from http://www.borisbukh.org/GeoCombEaster10/suppnotes2.pdf.
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A family F of convex sets is called a (p, ¢)-family if among every ¢ members
of F there are p that intersect. Helly theorem asserts that if F is a (d+1,d+1)-
family, then there is a point £ common to all the member of . The following
result is a version of this for (p, ¢)-families. A family of hyperplanes in general
position shows that (d,d)-family need not to have a point common to many
members of F. Also, it might happen that a (p,¢1 + g2 — 1)-family is a union
of a (p,qr)-family and a (p,ge)-family that are disjoint from one another, it
is no longer possible to guarantee a single point common to all member of a
(p, q)-family.

Theorem 3 ((p,q)-theorem). Let p > d+ 1. If F is a (p, q)-family in RY, then
there is a set X C R? of size | X| < f(p,q,d) such that every C € F meets X.

First we need to establish a weaker result.

Lemma 4. If F is a (d + 1,q)-family in R, then there is a point y € R
common to £|F| members of F, where e = (q,d) > 0.

Proof. By double-counting the number of (d + 1)-tuples of sets in F that have
non-empty intersection is at least
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The existence of the desired point y follows from the fractional Helly theorem.
O

Proof of the (p, q)-theorem. As every (p,q)-family is a (p — 1, ¢)-family, we can
restrict to the case p = d + 1. By weak e-net theorem it suffices to find a set
Y C R? that meets every C' € F in at least 6|Y| points where § = §(q,d). Let €
be as in the lemma above. With the hindsight choose § as to satisfy 2179 > 2—¢.
For purposes of this proof, let “cloning” of a set mean replacing a set by two
copies of itself. Consider the following algorithm to construct Y.

1) Initialise: Yo =0, Fo = F
2) At stage i — 1, pick a point y in at least £|F| members of F.

3) Let ¥; = Y;_1 U {y} and let F; be obtained from F;_; by Repeat for s stages
cloning all the members not containing y.

4) Terminate: output ¥ =Y.

Note that |F;| < |Fic1|+ (1 —e)Fim1 = (2 —¢)|F|. Thus |Fs| < (2 —¢)°|F|. If
a set C' € F contains fewer than §|Y| members of Y, then it is cloned into at
least 21V =0V = 2(1=9)s gets. Thus,

2(1=9)s < (2 —£)*| F|.

By the choice of 4 it follows that if s is large enough, then there is no set C' € F
containing fewer than J§|Y’| points of Y. O



