Geometric combinatorics: supplementary notes 1*

Theorem 1 (Jung's theorem). If $X \subset \mathbb{R}^d$ is a finite set such that $||x - y|| \le 1$ for all $x, y \in X$, then there is a point $p \in \mathbb{R}^d$ such that

$$||p - x|| \le \frac{1}{\sqrt{2}} \left(\frac{d}{d+1}\right)^{1/2}$$

for all $x \in P$.

Proof. Since the goal is to prove that the closed balls of radius $\frac{1}{\sqrt{2}} \left(\frac{d}{d+1} \right)^{1/2}$ centred at the points of X have a non-empty intersection, by Helly's theorem it suffices to treat the case $|X| \leq d+1$.

Without loss of generality, we can assume that the centre of the smallest ball containing X is the origin, and the radius of this ball is r. Let x_1, \ldots, x_m be all the points of X that are at distance exactly r from 0.

The minimality of r implies that $0 \in \text{conv}\{x_1, \ldots, x_m\}$. Indeed, if $0 \notin \text{conv}\{x_1, \ldots, x_m\}$, then there is a vector $v \in \mathbb{R}^d$ such that $\langle v, x_i \rangle > 0$ for all $i = 1, \ldots, m$, and the translated set $P - \varepsilon v$ is closer to the origin than P was, provided ε is small enough. Since $0 \in \text{conv}\{x_1, \ldots, x_m\}$, there are $\alpha_1, \ldots, \alpha_k$ such that

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0,$$

$$\alpha_1 + \dots + \alpha_k = 1.$$

Hence

$$\sum_{i \neq j} \alpha_i \ge \sum_{i \neq j} \alpha_i ||x_i - x_j||^2 = \sum_{i \neq j} \alpha_i (2r^2 - 2\langle x_i, x_j \rangle)$$
$$= 2r^2 - \langle \sum_{i \neq j} \alpha_i x_i, x_j \rangle = 2r^2.$$

Averaging over all $j=1,\ldots,m$ we obtain $\frac{m-1}{m}\sum_i \alpha_i \geq 2r^2$. The result follows from $m\leq d+1$.

It is easy to infer from the proof above that the theorem is sharp only if X contains all the d+1 vertices of a regular simplex with side-length 1.

^{*}These notes are from http://www.borisbukh.org/GeoCombEaster10/suppnotes1.pdf.

Lemma 2. If $C \subset \mathbb{R}^d$ is a non-empty compact set, there is a lexicographically minimal point of C.

Proof. The proof is by induction on d. The base case d=0 is trivial. If $d\geq 1$, let $x_{\min}=\inf\{x_1:(x_1,\ldots,x_d)\in C\}$. Since $(x_1,\ldots,x_d)\mapsto x_1$ is continuous, the value x_{\min} is attained, and $C'=\{y\in\mathbb{R}^{d-1}:\{x_{\min}\}\times y\}$ is non-empty. Since C' is compact subset of \mathbb{R}^{d-1} , the lemma follows by induction. \square