Theorem 1 (Jung’s theorem). If \(X \subset \mathbb{R}^d \) is a finite set such that \(\|x - y\| \leq 1 \) for all \(x, y \in X \), then there is a point \(p \in \mathbb{R}^d \) such that
\[
\|p - x\| \leq \frac{1}{\sqrt{2}} \left(\frac{d}{d+1} \right)^{1/2}
\]
for all \(x \in P \).

Proof. Since the goal is to prove that the closed balls of radius \(\frac{1}{\sqrt{2}} \left(\frac{d}{d+1} \right)^{1/2} \) centred at the points of \(X \) have a non-empty intersection, by Helly’s theorem it suffices to treat the case \(|X| \leq d + 1 \).

Without loss of generality, we can assume that the centre of the smallest ball containing \(X \) is the origin, and the radius of this ball is \(r \). Let \(x_1, \ldots, x_m \) be all the points of \(X \) that are at distance exactly \(r \) from 0.

The minimality of \(r \) implies that 0 \(\in \text{conv}\{x_1, \ldots, x_m\} \). Indeed, if 0 \(\not\in \text{conv}\{x_1, \ldots, x_m\} \), then there is a vector \(v \in \mathbb{R}^d \) such that \(\langle v, x_i \rangle > 0 \) for all \(i = 1, \ldots, m \), and the translated set \(P - \varepsilon v \) is closer to the origin than \(P \) was, provided \(\varepsilon \) is small enough. Since 0 \(\in \text{conv}\{x_1, \ldots, x_m\} \), there are \(\alpha_1, \ldots, \alpha_k \) such that
\[
\alpha_1 x_1 + \cdots + \alpha_m x_m = 0,
\]
\[
\alpha_1 + \cdots + \alpha_k = 1.
\]

Hence
\[
\sum_{i \neq j} \alpha_i \geq \sum_{i} \alpha_i \|x_i - x_j\|^2 = \sum_{i} \alpha_i (2r^2 - 2\langle x_i, x_j \rangle)
\]
\[
= 2r^2 - \sum_{i} \alpha_i x_i, x_j = 2r^2.
\]

Averaging over all \(j = 1, \ldots, m \) we obtain \(\frac{m-1}{m} \sum_{i} \alpha_i \geq 2r^2 \). The result follows from \(m \leq d + 1 \).

It is easy to infer from the proof above that the theorem is sharp only if \(X \) contains all the \(d + 1 \) vertices of a regular simplex with side-length 1.

*These notes are from http://www.borisbukh.org/GeoCombEaster10/suppnotes1.pdf
Lemma 2. If $C \subset \mathbb{R}^d$ is a non-empty compact set, there is a lexicographically minimal point of C.

Proof. The proof is by induction on d. The base case $d = 0$ is trivial. If $d \geq 1$, let $x_{\text{min}} = \inf \{x_1 : (x_1, \ldots, x_d) \in C\}$. Since $(x_1, \ldots, x_d) \mapsto x_1$ is continuous, the value x_{min} is attained, and $C' = \{y \in \mathbb{R}^{d-1} : \{x_{\text{min}}\} \times y\}$ is non-empty. Since C' is compact subset of \mathbb{R}^{d-1}, the lemma follows by induction. \square