Geometric combinatorics: example sheet 3^*

- 1. Suppose $\mathcal{F}_1 \subset 2^X$ and $\mathcal{F}_2 \subset 2^X$ are two families of finite VC-dimension. Show that the family $\{S_1 \cup S_2 : S_1 \in \mathcal{F}_1, S_2 \in \mathcal{F}_2\}$ has finite VC-dimension.
- 2. Let X be an n-element set. Construct a family $\mathcal{F} \subset 2^X$ of VC-dimension d with $g(d, n) = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{d}$ elements. Is it unique?
- 3. Let (X, \mathcal{F}) be a set family. Recall that an ε -approximation to a finite set $P \subset X$ is a set $P' \subset P$ such that for all $S \in \mathcal{F}$ we have

$$\left|\frac{|P \cap S|}{|P|} - \frac{|P' \cap S|}{|P'|}\right| \le \varepsilon.$$

Show that if VC-dimension of \mathcal{F} is d, then for every finite $P \subset X$ there is a (1/r)-approximation P' of size $|P'| \leq c_d r^2 \log r$.

- 4. A weak ε -approximation is analogous to (strong) ε -approximations, except that they need not be subsets of sets they approximate (the condition $P' \subset P$ is dropped). Show that there is no function $f(\varepsilon)$ such that for every finite set $P \subset \mathbb{R}^2$ there is a weak ε -approximation $P' \subset \mathbb{R}^2$ to Pwith respect to the family of convex sets of size $|P'| \leq f(\varepsilon)$.
- 5. ("Second selection theorem") Suppose that $P \subset \mathbb{R}^d$ is a set of n points, \mathcal{F} is a family of all the $\binom{n}{d+1}$ simplices spanned by P, and $\mathcal{F}' \subset \mathcal{F}$ is a family of size $\alpha\binom{n}{d+1}$. Show that there is a point $p \in \mathbb{R}^d$ that is contained in at least $\beta\binom{n}{d+1}$ members of \mathcal{F}' , where $\beta = \beta(\alpha, d) > 0$.
- 6. (Same-type lemma, special case) The *orientation* of a triangle $p_1p_2p_3$ is either clockwise or counterclockwise depending on the sign of the determinant

$$\det \begin{bmatrix} 1 & p_{11} & p_{12} \\ 1 & p_{21} & p_{22} \\ 1 & p_{31} & p_{32} \end{bmatrix}$$

Suppose $P_1, P_2, P_3 \subset \mathbb{R}^2$ are three sets of points in the plane, each containing *n* points. Show that there are subsets $P'_1 \subset P_1, P'_2 \subset P_2, P'_3 \subset P_3$ of sizes $|P'_1|, |P'_2|, |P'_3| \geq cn$, where c > 0 is an absolute constant, so that

^{*}This example sheet is from http://www.borisbukh.org/GeoCombEaster10/example3.pdf.

the triangles of the form $p_1p_2p_3$, $p_1 \in P_1$, $p_2 \in P_2$, $p_3 \in P_3$, all have the same orientation. Hint: Cut the sets P_1, P_2, P_3 by appropriately chosen lines.