Geometric combinatorics: example sheet 2^*

- 1. Suppose $P_1 \subset \mathbb{R}^d$ and $P_2 \subset \mathbb{R}^d$ are finite sets that satisfy $\operatorname{conv}(P_1) \cap \operatorname{conv}(P_2) = \emptyset$. Convince your non-mathematical friend that there is a hyperplane h such that P_1 and P_2 are on different sides of h. *Next, convince yourself that the same holds if P_1 and P_2 are arbitrary compact sets.
- 2. Suppose the point $p \in \mathbb{R}^d$ is at depth αn with respect to the *n*-point set $P \subset \mathbb{R}^d$, and $\alpha > 0$. Show that there is a constant $\beta = \beta(\alpha, d) > 0$ such that the point *p* is in at least $\beta \binom{n}{d+1}$ of the simplices spanned by *P*.
- 3. Parametrize the directions in \mathbb{R}^d by the unit sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^d$. Let "almost all" mean "for all except possibly a set of measure zero". Let $C \subset \mathbb{R}^d$ be a compact convex set. Suppose d = 2, and show that for almost all directions $v \in \mathbb{S}^{d-1}$ there is a unique point $p \in C$ attaining min $\langle v, p \rangle$. *(Very difficult) What about $d \geq 3$?
- 4. Assuming the solution to the previous exercise, give a proof of the fractional Helly theorem for d = 2 that uses $\min \langle v, p \rangle$ for appropriate v in place of lexicographic minima.
- 5. Let $P \subset \mathbb{R}^2$ be a finite set of points, not all of which lie on a single line. Show that there is a line that passes through exactly two of them.
- 6. (Coloured Helly theorem) Let C_1, \ldots, C_{d+1} be finite families of convex sets in \mathbb{R}^d such that for every

$$C_1 \in \mathcal{C}_1, \ldots, C_{d+1} \in \mathcal{C}_{d+1}$$

the intersection $\bigcap C_i$ is non-empty. Then for some i, we have $\bigcap C_i \neq \emptyset$. Hint: consider lexicographic minima.

7. A convexity space is a ground set X, together with a collection \mathcal{C} of subsets of X, called convex sets, with condition that the empty set and X itself are convex, and \mathcal{C} is closed under arbitrary intersections. A convex hull of $S \subset X$ is the smallest convex set containing S, conv $S = \bigcap \{C \in \mathcal{C} : S \subset C\}$. For example, \mathbb{R}^d together with the family of standard convex sets is a convexity space. For a convexity space (X, \mathcal{C}) let N_r be the least number N such that

^{*}This example sheet is from http://www.borisbukh.org/GeoCombEaster10/example2.pdf.

every set $P \subset X$ of size |P| = N can be partitioned into r sets $P = P_1 \cup \cdots \cup P_r$ so that $\operatorname{conv}(P_1) \cap \cdots \cap \operatorname{conv}(P_r) \neq \emptyset$. Show that if N_2 is finite, then so is N_r for every r. *(Open problem) Show that $N_r \leq (N_2 - 1)(r - 1) + 1$, which in particular would mean that Radon's theorem implies Tverberg's theorem.