Walk through Combinatorics: homework #8* Due never

Homework must be NOT be submitted. It is for your own practice. Feel free to discuss it with me in office hours though.

- 1. (a) Let A be a finite non-empty subset of an abelian group G. Show that if |A + A| = |A|, then A is a coset of a subgroup of G.
 - (b) What happens if G is not abelian?
- 2. Recall that $\lambda \cdot A = \{\lambda a : a \in A\}$. Suppose $|A + 2 \cdot A| \leq K|A|$. Show that $|A + 2^t \cdot A| \leq K^t|A|$ for all $t \in \mathbb{N}$.
- 3. (a) Let C be a set of m unit circles in \mathbb{R}^2 and let P be a set of n points in \mathbb{R}^2 . Let I(P,C) be the number of pair $(p,c) \in P \times C$ such that $p \in c$. Prove that $I(P,C) = O((mn)^{2/3} + m + n)$.
 - (b) Show that if $P \subset \mathbb{R}^2$ is of size |P| = n, then there are $O(n^{4/3})$ pairs of points in P that are distance 1 apart.
 - (c) (Open problem; much extra credit) Show that in (b) one can replace $O(n^{4/3})$ by $o(n^{4/3})$, probably by $O(n^{1+\varepsilon})$ for every $\varepsilon > 0$.
- 4. (a) Suppose A, B_1, \ldots, B_m are non-empty finite subsets of an abelian group G, and $|A + B_i| \le K|A|$ for every $i = 1, 2, \ldots, m$. Show that $|B_1 + B_2 + \cdots + B_k| \le K^m |A|$. (Hint: consider Cartesian products $A' = A^n$ and $B'_i = B^n_i$ inside G^n , and then look at $|A' + B'_i|$.)
 - (b) Suppose $|A + B_i| \le K_i |A|$ for each i = 1, 2, ..., m. Show the inequality $|B_1 + \cdots + B_m| \le K_1 K_2 \dots K_m |A|$.
- 5. Let $A \subset \mathbb{Z}$ be finite and non-empty. Put K = |A + A|/|A|. Show that the exponent 3 in the inequality $|A + A + A| \leq K^3 |A|$ is tight. (Hint: Consider the set $B = [m]^3 \cup \{(t, 0, 0) : t \in [n]\} \cup \{(0, t, 0) : t \in [n]\} \cup \{(0, 0, t) : t \in [n]\}$ inside \mathbb{Z}^3)

^{*}This homework is from http://www.borisbukh.org/DiscreteMath16/hw8.pdf.