Walk through Combinatorics: Exposure martingales

Exposure martingales Suppose $\Omega_1, \ldots, \Omega_n$ are probability spaces on discrete sets A_1, \ldots, A_n respectively, and we have a function $f : A_1 \times \cdots \times A_n \to \mathbb{R}$. We can then sample independently b_1 from A_1, b_2 from A_2, etc, and consider the random variable $f(b_1, \ldots, b_n)$.

To this random variable we can associate a sequence of random variables X_0, \ldots, X_n as follows:

$X_0(\vec{a}) = \mathbb{E}_\vec{b}[f(\vec{b})]$,

$X_1(\vec{a}) = \mathbb{E}_\vec{b}[f(\vec{b}) \mid a_1 = b_1]$,

$X_2(\vec{a}) = \mathbb{E}_\vec{b}[f(\vec{b}) \mid a_2 = b_2 \land a_1 = b_1]$,

\vdots

$X_i(\vec{a}) = \mathbb{E}_\vec{b}[f(\vec{b}) \mid \bigwedge_{j \leq i} (a_j = b_j)]$,

where the subscript in $\mathbb{E}_\vec{b}$ indicates that the expectation is taken over the random choice of \vec{b}. Note that $X_n = f(a_1, \ldots, a_n)$.

Lemma 1. The sequence of random variables X_0, \ldots, X_n is a martingale.

Proof. We need to verify that, for arbitrary values of x_0, \ldots, x_i, we have

$$\mathbb{E}[X_{i+1} \mid (X_i = x_i) \land \cdots \land (X_0 = x_0)] = x_i.$$

Let E be the event $(X_i = x_i) \land \cdots \land (X_0 = x_0)$. Since

$$\mathbb{E}_\vec{b}[X_{i+1}(\vec{b}) \mid E] = \sum_{\vec{a}} \mathbb{E}_\vec{b}[X_{i+1} \mid E \land \bigwedge_{j \leq i} (a_j = b_j)] \Pr[\bigwedge_{j \leq i} (a_j = b_j) \mid E]$$

the summands for which $\vec{a} \notin E$ vanish, and so the above is equal to

$$= \sum_{\vec{a} \in E} \mathbb{E}_\vec{b}[X_{i+1} \mid \bigwedge_{j \leq i} (a_j = b_j)] \Pr[\bigwedge_{j \leq i} (a_j = b_j) \mid E]$$

These notes are available from the course webpage, and directly from http://www.borisbukh.org/DiscreteMath14/notes_exposure_martingales.pdf
it suffices to verify that, whenever $X_i(\vec{a}) = x_i$, we have

$$E_{\vec{b}}[X_{i+1}(\vec{b}) \mid \bigwedge_{j \leq i} (a_j = b_j)] = x_i.$$

Let Pr_i denote the probability on the Ω_i. Since $X_{i+1}(\vec{b})$ depends only on the (b_1, \ldots, b_{i+1}) we have

$$E_{\vec{b}}[X_{i+1}(\vec{b}) \mid \bigwedge_{j \leq i} (a_j = b_j)] = \sum_{b_{i+1} \in A_{i+1}} Pr_{i+1}[b_{i+1} | X_{i+1}(a_1, \ldots, a_i, b_{i+1})]
\quad = \sum_{b_{i+1} \in A_{i+1}} Pr_{i+1}[b_{i+1} | \mathbb{E}_{\vec{c}}[f(\vec{c}) | c_{i+1} = b_{i+1} \wedge \bigwedge_{j \leq i} c_j = a_j]]
\quad = \mathbb{E}_{\vec{c}}[f(\vec{c}) | \bigwedge_{j \leq i} c_j = a_j]
\quad = X_i(\vec{a}).$$

The martingale X_0, \ldots, X_n is called exposure martingale for the function f and the sequence of A_1, \ldots, A_n. The reason for the name is that one can think of the sequence X_i as the expectations of f when the first i variables b_1, \ldots, b_i have been exposed, but the rest remain unknown.

Two examples of particular interest to us are associated to exposure of edges and vertices in a random graph $G(n, p)$:

Edge-exposure martingale Let $f: 2^{\binom{n}{2}} \rightarrow \mathbb{R}$ be a function on n-vertex graphs, and suppose we are interested in the random variable $f(G)$ where G is sampled from $G(n, p)$. We can write

$$2^{\binom{n}{2}} = \prod_{e \in \binom{[n]}{2}} A_e$$

where the set $A_e = [2]$ records whether the edge e is in a graph or not. Let $b_e \in A_e$ be equal to 2 with probability p and 1 with probability $1 - p$. Then the vector \vec{b} is naturally identified with the graph G. If we order the edges of $\binom{[n]}{2}$ as $e_1, \ldots, e_{\binom{n}{2}}$, then we obtain an exposure martingale

$$X_i(H) = \mathbb{E}_G[f(G) \mid \bigwedge_{j \leq i} ((e_j \in G) \iff (e_j \in H))].$$

This martingale is known as an edge-exposure martingale for the function f. It has length $\binom{n}{2}$.

Vertex-exposure martingale As in the previous example we consider a graph function $f: 2^{\binom{n}{2}} \rightarrow \mathbb{R}$, and we are interested in $G(n, p)$. This time, for each $i = 1, \ldots, n$ we define

$$A_i = \prod_{j < i} A_{\{j, i\}},$$

2
where $A_{(j,k)}$ are as in the previous example. The resulting martingale

$$X_i(H) = E_G\left[f(G) \mid \bigwedge_{j,k \leq i} (\{j, k\} \in G \iff \{j, k\} \in H)\right]$$

is known as the \textit{vertex-exposure martingale}. It corresponds to exposing in i’th step all edges going back from the vertex i. This martingale has length n.

\textbf{Lipschitz functions} Azuma’s inequality requires martingales satisfying $|X_{i+1} - X_i| \leq 1$. The following condition on f is the most common way to satisfy this requirement.

A function $f: A_1 \times \cdots \times A_n \to \mathbb{R}$ is called 1-\textit{Lipschitz} if $|f(\bar{a}) - f(\bar{a}')| \leq 1$ whenever \bar{a} and \bar{a}' differ in at most one coordinate.

\textbf{Lemma 2}. If $f: A_1 \times \cdots \times A_n \to \mathbb{R}$ is 1-Lipschitz, then the associated exposure martingale satisfies $|X_{i+1} - X_i| \leq 1$.

\textbf{Proof}. Fix \bar{a} arbitrarily. We will show that $|X_{i+1}(\bar{a}) - X_i(\bar{a})| \leq 1$. We have

$$X_i(\bar{a}) = E_{\bar{b}}\left[f(\bar{b}) \mid \bigwedge_{j \leq i} (a_j = b_j)\right],$$

$$X_{i+1}(\bar{a}) = E_{\bar{b}}\left[f(\bar{b}) \mid (a_{i+1} = b_{i+1}) \land \bigwedge_{j \leq i} (a_j = b_j)\right].$$

Define function $g: A_1 \times \cdots \times A_n \to \mathbb{R}$ by

$$g(\bar{b}) = f(b_1, \ldots, b_i, a_{i+1}, b_{i+2}, \ldots, b_n).$$

Since f is 1-Lipschitz, we have

$$|g(\bar{b}) - f(\bar{b})| \leq 1 \quad \text{for all } \bar{b}. \tag{2}$$

We can replace f by g in the definition of X_{i+1}, and then get rid of conditioning on b_{i+1} to obtain

$$X_{i+1}(\bar{a}) = E_{\bar{b}}\left[g(\bar{b}) \mid (a_{i+1} = b_{i+1}) \land \bigwedge_{j \leq i} (a_j = b_j)\right]$$

$$= E_{\bar{b}}\left[g(\bar{b}) \mid \bigwedge_{j \leq i} (a_j = b_j)\right]. \tag{3}$$

The lemma follows by subtracting [1] from [3], and then applying [2]. \qed

In the cases of edge- and vertex-exposure martingales, the functions f satisfying the assumption of the lemma are called \textit{edge-} and \textit{vertex-Lipschitz} respectively.
Application to the chromatic number of a graph The combination of the Azuma’s lemma, and the preceding inequality is incredibly powerful. Here is a simple example. Let \(\chi(G) \) be the chromatic number of a graph \(G \). Note that \(G \) is vertex-Lipschitz. Indeed, if \(G \) and \(G' \) differ only in the edges emanating from some vertex \(v \), then \(\chi(G) \leq \chi(G') + 1 \) because we can take a coloring of \(G' \) in \(\chi(G') \) colors, and re-color \(v \) in a totally new color to obtain a proper coloring of \(G \). Similarly, \(\chi(G') \leq \chi(G) + 1 \), and so \(|\chi(G) - \chi(G')| \leq 1 \). We then deduce from Azuma’s inequality that

\[
\Pr[|\chi(G) - \mathbb{E}[\chi(G)]| > \lambda] < 2 \exp(-\lambda^2/2n).
\]

So, the chromatic number is concentrated in an interval of length \(\Theta(\sqrt{n}) \) around its mean. However, this does not tell us what the mean is!

Bonus material on martingales: If \(X_0, X_1, \ldots, X_n \) is a sequence of random variables satisfying the condition \(\Pr[X_{i+1}|X_i = x_i] = x_i \) for all \(i \) and \(x_i \), then it does not follow that \(X_0, \ldots, X_n \) is a martingale. Here is a counterexample. Consider a random variable \(Y \) sampled from \(\{-1, +1\}^3 \) according to the following weird rule

\[
\begin{align*}
\Pr[(-1, -1, -1)] &= 1/8, \\
\Pr[(-1, -1, +1)] &= 1/8, \\
\Pr[(-1, +1, -1)] &= 1/4, \\
\Pr[(+1, -1, +1)] &= 1/4, \\
\Pr[(+1, +1, -1)] &= 1/8, \\
\Pr[(+1, +1, +1)] &= 1/8.
\end{align*}
\]

Let \(f = \sum_{j=1}^3 Y_j \), and let \(X_i = \sum_{j\leq i} Y_j \). We have \(\Pr[X_{i+1}|X_i = x_i] = x_i \) for all \(i \), but \(\Pr[X_3|X_2 = 0, X_1 = x_1] = x_1 \).