Walk through Combinatorics:

Exposure martingales®

Exposure martingales Suppose (1,...,, are probability spaces on discrete sets
Aq, ..., A, respectively, and we have a function f: A; x --- x A, — R. We can then
sample independently by from Ay, by from As, etc, and consider the random variable

F(bi, ..., by).
To this random variable we can associate a sequence of random variables Xy, ..., X,
as follows:
Xo(@) = E5{f (b)),
X1 (@) = Eglf (B) | a1 = bu],
Xo(@) = E;[f(b) | az = by Aag = by,

Xi(@) =Bz [£(b) | \(a; =0b)].

J<i
where the subscript in Ey indicates that the expectation is taken over the random choice
of b. Note that X,, = f(a1,...,an).

Lemma 1. The sequence of random variables Xg, ..., X, is a martingale.

Proof. We need to verify that, for arbitrary values of zg, ..., z;, we have
E[Xit1|(Xi=2i) A A (Xo =m0)] = .

Let E be the event (X; = x;) A--- A (Xo = zg). Since

Ep[Xip1(0) | E] = Y E[Xip | EA N(a; =b)] Pr[\(a; = b;) | E]

J<i J<i

the summands for which @ ¢ F vanish, and so the above is equal to

= > Eg[Xi1 | Ao = b)) Pr[A(e; = b;) | E]

ack J<i J<i

*These notes are available from the course webpage, and directly from http://www.borisbukh.org/
DiscreteMath14/notes_exposure_martingales .pdf


http://www.borisbukh.org/DiscreteMath14/notes_exposure_martingales.pdf
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it suffices to verify that, whenever X;(@) = z;, we have
Xip1(0) | N(aj = bj)] = @
J<i

—,

Let Pr; denote the probability on the ;. Since X;41(b) depends only on the (b1, ..., b;j+1)
we have

Xip1®) | Ny =b)] = > Pripalbip)Xia(ar,...,ai,biga)
J<i bit1€A41
= Z Prz—i—l H—l] [ (5) | Cir1 =bit1 A /\ Cj = CL]]
b2+16A1+1 ]SZ
@1 N\ e = ay]
J<i

= X;(d). O
The martinagle Xo,..., X, is called exposure martingale for the function f and the
sequence of Aq,...,A,. The reason for the name is that one can think of the sequence
X, as the expectations of f when the first ¢ variables by, ...,b; have been exposed, but

the rest remain unknown.
Two examples of particular interest to us are associated to exposure of edges and
vertices in a random graph G(n,p):

(n]
Edge-exposure martingale Let f: 2(3) 5 R be a function on n-vertex graphs, and
suppose we are interested in the random variable f(G) where G is sampled from G(n,p).

[n] H A,
eE( )

where the set A, = [2] records whether the edge e is in a graph or not. Let b, € A, be

We can write

equal to 2 with probability p and 1 with probability 1 —p. Then the vector bis naturally

identified with the graph G. If we order the edges of ([TQL]) as €1,...,€e(m), then we obtain
2

an exposure martingale

Xi(H) = Ba[£(G) | \((e; € G) = (e € H))].

J<i
This martingale is known as an edge-exposure martingale for the function f. It has length

(5)-

Vertex-exposure martingale As in the previous example we consider a graph func-

[n] .
tion f: 2(%) R, and we are interested in G(n,p). This time, for each i = 1,...,n we
define
Ai =[] 4ya.
7<i
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where Ay; ) are as in the previous example. The resulting martingale

Xi(H) =Ea|f(G)| N\ (k) € G = {j;k} € H)]

Jk<i

is known as the wvertez-erposure martingale. It corresponds to exposing in i’th step all
edges going back from the vertex ¢. This martingale has length n.

Lipschitz functions Azuma’s inequality requires martingales satisfying |X;11 — X;| <
1. The following condition on f is the most common way to satisfy this requirement.

A function f: Ay x -+ x A, — R is called 1-Lipschitz if | f(@) — f(@')| < 1 whenever
d and a’ differ in at most one coordinate.

Lemma 2. If f: Ay x---x A, = R is 1-Lipschitz, then the associated exposure martingale
satisfies | X;y1 — X;| < 1.

Proof. Fix @ arbitrarily. We will show that |X;4+1(a@) — X;(a@)| < 1. We have

Define function g: Ay x --- x A, — R by

g(b) = f(bl, e ,bi,aiﬂ, bi+2, ceey bn)

Since f is 1-Lipschitz, we have

lg(b) — f(b)] <1 for all b. (2)
We can replace f by g in the definition of X; 1, and then get rid of conditioning on b;
to obtain
Xi41(@) = Ez[g(0) | (@it1 = bit1) A /\(a; = b;)]
j<i
= Ez[g(b) | N(a; =b;)]. (3)
J<i
The lemma follows by subtracting from , and then applying . O

In the cases of edge- and vertex-exposure martingales, the functions f satisfying the
assumption of the lemma are called edge- and vertez-Lipschitz respectively.
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Application to the chromatic number of a graph The combination of the Azuma’s
lemma, and the preceding inequality is incredibly powerful. Here is a simple example.
Let x(G) be the chromatic number of a graph G. Note that G is vertex-Lipschitz. Indeed,
if G and G’ differ only in the edges emanating from some vertex v, then x(G) < x(G')+1
because we can take a coloring of G’ in x(G’) colors, and re-color v in a totally new color
to obtain a proper coloring of G. Similarly, x(G') < x(G)+1, and so |x(G) — x(G")| < 1.
We then deduce from Azuma’s inequality that

Pr[|x(G) — E[X(G)]| > A] < 2exp(—\/2n).

So, the chromatic number is concentrated in an interval of length ©(y/n) around its mean.
However, this does not tell us what the mean is!

Bonus material on martingales: If X, X1,..., X, is a sequence of random variables
satisfying the condition Pr[X;1|X; = 2;] = z; for all i and z;, then it does not follow
that Xy, ..., X, is a martingale. Here is a counterexample. Consider a random variable
Y sampled from {—1,+1}3 according to the following weird rule

Pr(~1, 1, 1) = 1/8,
Pr[(—1,—1,+1)] = 1/8,
Pr(—1,+1, 1) = 1/4,
Pr[(+1,—1,+1)] = 1/4,
Pr[(+1,+1,—1)] = 1/8,
Pr[(+1,+1,+1)] = 1/8.

Let f = 22:1 Y;, and let X; = Zjﬁiyj' We have E[X;1|X; = z;] = z; for all 4, but
E[X3’X2 = O,Xl = 1'1] = xI1.



