
Walk through Combinatorics:

Exposure martingales∗

Exposure martingales Suppose Ω1, . . . ,Ωn are probability spaces on discrete sets

A1, . . . , An respectively, and we have a function f : A1 × · · · × An → R. We can then

sample independently b1 from A1, b2 from A2, etc, and consider the random variable

f(b1, . . . , bn).

To this random variable we can associate a sequence of random variables X0, . . . , Xn

as follows:

X0(~a) = E~b
[f(~b)],

X1(~a) = E~b
[f(~b) | a1 = b1],

X2(~a) = E~b
[f(~b) | a2 = b2 ∧ a1 = b1],

...

Xi(~a) = E~b

[
f(~b) |

∧
j≤i

(aj = bj)
]
,

where the subscript in E~b
indicates that the expectation is taken over the random choice

of ~b. Note that Xn = f(a1, . . . , an).

Lemma 1. The sequence of random variables X0, . . . , Xn is a martingale.

Proof. We need to verify that, for arbitrary values of x0, . . . , xi, we have

E
[
Xi+1|(Xi = xi) ∧ · · · ∧ (X0 = x0)

]
= xi.

Let E be the event (Xi = xi) ∧ · · · ∧ (X0 = x0). Since

E~b
[Xi+1(~b) | E] =

∑
~a

E
[
Xi+1 | E ∧

∧
j≤i

(aj = bj)
]

Pr
[∧
j≤i

(aj = bj) | E
]

the summands for which ~a 6∈ E vanish, and so the above is equal to

=
∑
~a∈E

E~b

[
Xi+1 |

∧
j≤i

(aj = bj)
]

Pr
[∧
j≤i

(aj = bj) | E
]

∗These notes are available from the course webpage, and directly from http://www.borisbukh.org/

DiscreteMath14/notes_exposure_martingales.pdf
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it suffices to verify that, whenever Xi(~a) = xi, we have

E~b

[
Xi+1(~b) |

∧
j≤i

(aj = bj)
]

= xi.

Let Pri denote the probability on the Ωi. SinceXi+1(~b) depends only on the (b1, . . . , bi+1)

we have

E~b

[
Xi+1(~b) |

∧
j≤i

(aj = bj)
]

=
∑

bi+1∈Ai+1

Pr i+1[bi+1]Xi+1(a1, . . . , ai, bi+1)

=
∑

bi+1∈Ai+1

Pr i+1[bi+1]E~c

[
f(~c) | ci+1 = bi+1 ∧

∧
j≤i

cj = aj
]

= E~c

[
f(~c) |

∧
j≤i

cj = aj
]

= Xi(~a).

The martinagle X0, . . . , Xn is called exposure martingale for the function f and the

sequence of A1, . . . , An. The reason for the name is that one can think of the sequence

Xi as the expectations of f when the first i variables b1, . . . , bi have been exposed, but

the rest remain unknown.

Two examples of particular interest to us are associated to exposure of edges and

vertices in a random graph G(n, p):

Edge-exposure martingale Let f : 2([n]
2 ) → R be a function on n-vertex graphs, and

suppose we are interested in the random variable f(G) where G is sampled from G(n, p).

We can write

2([n]
2 ) =

∏
e∈([n]

2 )

Ae

where the set Ae = [2] records whether the edge e is in a graph or not. Let be ∈ Ae be

equal to 2 with probability p and 1 with probability 1− p. Then the vector ~b is naturally

identified with the graph G. If we order the edges of
(
[n]
2

)
as e1, . . . , e(n2)

, then we obtain

an exposure martingale

Xi(H) = EG

[
f(G) |

∧
j≤i

(
(ej ∈ G) ⇐⇒ (ej ∈ H)

)]
.

This martingale is known as an edge-exposure martingale for the function f . It has length(
n
2

)
.

Vertex-exposure martingale As in the previous example we consider a graph func-

tion f : 2([n]
2 ) → R, and we are interested in G(n, p). This time, for each i = 1, . . . , n we

define

Ai =
∏
j<i

A{j,i},
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where A{j,k} are as in the previous example. The resulting martingale

Xi(H) = EG

[
f(G) |

∧
j,k≤i

(
{j, k} ∈ G ⇐⇒ {j, k} ∈ H

)]
is known as the vertex-exposure martingale. It corresponds to exposing in i’th step all

edges going back from the vertex i. This martingale has length n.

Lipschitz functions Azuma’s inequality requires martingales satisfying |Xi+1−Xi| ≤
1. The following condition on f is the most common way to satisfy this requirement.

A function f : A1 × · · · ×An → R is called 1-Lipschitz if |f(~a)− f(~a′)| ≤ 1 whenever

~a and ~a′ differ in at most one coordinate.

Lemma 2. If f : A1×· · ·×An → R is 1-Lipschitz, then the associated exposure martingale

satisfies |Xi+1 −Xi| ≤ 1.

Proof. Fix ~a arbitrarily. We will show that |Xi+1(~a)−Xi(~a)| ≤ 1. We have

Xi(~a) = E~b

[
f(~b) |

∧
j≤i

(aj = bj)
]
, (1)

Xi+1(~a) = E~b

[
f(~b) | (ai+1 = bi+1) ∧

∧
j≤i

(aj = bj)
]
.

Define function g : A1 × · · · ×An → R by

g(~b) = f(b1, . . . , bi, ai+1, bi+2, . . . , bn).

Since f is 1-Lipschitz, we have

|g(~b)− f(~b)| ≤ 1 for all ~b. (2)

We can replace f by g in the definition of Xi+1, and then get rid of conditioning on bi+1

to obtain

Xi+1(~a) = E~b

[
g(~b) | (ai+1 = bi+1) ∧

∧
j≤i

(aj = bj)
]

= E~b

[
g(~b) |

∧
j≤i

(aj = bj)
]
. (3)

The lemma follows by subtracting (1) from (3), and then applying (2).

In the cases of edge- and vertex-exposure martingales, the functions f satisfying the

assumption of the lemma are called edge- and vertex-Lipschitz respectively.
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Application to the chromatic number of a graph The combination of the Azuma’s

lemma, and the preceding inequality is incredibly powerful. Here is a simple example.

Let χ(G) be the chromatic number of a graph G. Note that G is vertex-Lipschitz. Indeed,

if G and G′ differ only in the edges emanating from some vertex v, then χ(G) ≤ χ(G′)+1

because we can take a coloring of G′ in χ(G′) colors, and re-color v in a totally new color

to obtain a proper coloring of G. Similarly, χ(G′) ≤ χ(G) + 1, and so |χ(G)−χ(G′)| ≤ 1.

We then deduce from Azuma’s inequality that

Pr
[
|χ(G)− E[χ(G)]| > λ] < 2 exp(−λ2/2n).

So, the chromatic number is concentrated in an interval of length Θ(
√
n) around its mean.

However, this does not tell us what the mean is!

Bonus material on martingales: If X0, X1, . . . , Xn is a sequence of random variables

satisfying the condition Pr[Xi+1|Xi = xi] = xi for all i and xi, then it does not follow

that X0, . . . , Xn is a martingale. Here is a counterexample. Consider a random variable

Y sampled from {−1,+1}3 according to the following weird rule

Pr[(−1,−1,−1)] = 1/8,

Pr[(−1,−1,+1)] = 1/8,

Pr[(−1,+1,−1)] = 1/4,

Pr[(+1,−1,+1)] = 1/4,

Pr[(+1,+1,−1)] = 1/8,

Pr[(+1,+1,+1)] = 1/8.

Let f =
∑3

j=1 Yj , and let Xi =
∑

j≤i Yj . We have E[Xi+1|Xi = xi] = xi for all i, but

E[X3|X2 = 0, X1 = x1] = x1.
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