
Walk through Combinatorics:

Sumset inequalities∗.
(Version 2d: revised 3 December 2018)

The aim of additive combinatorics If A and B are two non-empty sets of numbers,

their sumset is the set A+B
def
= {a+b : a ∈ A, b ∈ B}. The additive combinatorics can be

crudely described as being concerned with describing structure of sets A for which A+A

is small. The reason a whole branch of mathematics is devoted to this problem is the

ubiquity of convolutions in mathematics. Recall that a convolution of two discrete-valued

functions f, g is the function f ∗ g defined by f ∗ g(x) =
∑

y+z=x f(y)g(z). If f, g are

non-negative, then the support of f ∗ g is a sumset: supp f ∗ g ⊆ supp f + supp g. This

hints at links between additive combinatorics and understanding convolutions. Some of

these links require generalizations of the notion of sumsets, which we will not pursue here.

Structure of sets of with small doubling Suppose A is a set of n integers. The

sumset A+A can be as large as
(
n+1
2

)
, and if A is a random sets it will be this large. We

thus think of sets A with large A+A as additively unstructured. On the other hand, the

sets with small A+A are very structured. Let us examine the examples.

First, if A is {1, 2, . . . , n} or any other arithmetic progression of n elements, then

|A+A| = 2n− 1. It is not overly difficult to show by induction on n that the converse is

true: for every n-element set we have |A+A| ≥ 2n− 1, with equality only for arithmetic

progressions.

Second, if A is a large subset of an arithmetic progression, then A+A is small, being

a subset of a corresponding arithmetic progression. It can be shown that if A+A is not

too large, |A+A| ≤ 3n− 2, then A is a large subset of an arithmetic progression.

However, there is one more example of a set with a small sumset. Set A′ = [n]2 ⊂ Z2

satisfies |A′ + A′| ≤ 4|A′|, and if we choose any linear map φ : Z2 → Z that is injective

on A′, the set A = φ(A′) also satisfies |A + A| ≤ 4|A|. Such a set A is an arithmetic

progression of arithmetic progressions, such as one drawn below.

This example can be combined with the previous example. We take a dense subset of

[n]2, and project it to Z. These examples naturally generalize to rectangles other than
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squares, and to higher dimensions. A famous result in additive combinatorics, Freiman’s

theorem asserts that the converse is true: any set A with |A + A| ≤ K|A| is a dense

subset of a projection of a low-dimensional parallelepiped. However, the known bounds

in Freiman’s theorem make it useless for majority of applications, and much of additive

combinatorics is devoted to bypassing the need for Freiman’s theorem.

Triangle inequalities In applications often one has a set A with small sumset, and

one wishes to show that A enjoys some of the properties that the arithmetic progression

enjoys. For example, one might want to conclude that the difference set A − A is also

small. The following inequalities serve that and other purposes

Theorem 1 (Ruzsa’s difference triangle inequality). Suppose A,B,C are non-empty sets

in some abelian group. Then

|A−B| ≤ |A− C||C −B|
|C|

.

Theorem 2 (Ruzsa’s sum triangle inequality). Suppose A,B,C are non-empty sets in

some abelian group. Then

|A+B| ≤ |A+ C||C +B|
|C|

.

Corollary 3 (Ruzsa’s triangle inequalities). Suppose A,B,C are non-empty sets in some

abelian group. Then

|A±B| ≤ |A± C||C ±B|
|C|

hold for all eight possible choices of the signs.

The Corollary follows from the Theorems by replacing sets B and C by −B and −C
as appropriate.

If we take A = B = C, then as a special case we obtain that

|A+A| ≤ K|A| =⇒ |A−A| ≤ K2|A+A|, (1)

|A−A| ≤ K|A| =⇒ |A+A| ≤ K2|A−A|. (2)

We shall prove (1) and Theorem 1, which implies (2). We shall also prove Theorem 2.

The two theorems not only resemble the triangle inequality, by allowing to control

A+ B via A+ C and B + C, but can also be rewritten as the usual triangle inequality.

Consider, for example, Theorem 1, and define d(A,B)
def
= log

[
|A − B|/(|A||B|)1/2

]
. We

can then rewrite Theorem 1 as

d(A,B) ≤ d(A,C) + d(C,B).

Of course, Theorem 2 be rewritten similarly.

Despite their similarities the two theorems are very different. Theorem 1 is much

easier to prove, with a proof that admits a generalization to non-abelian groups.
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Proof of Theorem 1. We shall prove that |A− B||C| ≤ |A− C||C − B| by exhibiting an

injection φ : (A−B)×C → (A−C)× (C−B). For each x ∈ A−B choose a(x) ∈ A and

b(x) ∈ B such that a(x)− b(x) = x. Then put φ(x, c) =
(
a(x)− c, c− b(x)

)
. The map is

injective since from
(
a(x)− c, c− b(x)

)
one can recover x as x = (a(x)− c) + (c− b(x))

and c as c = (c− b(x)) + b(x).

Plünnecke–Ruzsa–Petridis inequalities The proof of (1) rests on the following

lemma.

Lemma 4 (Plünnecke–Ruzsa–Petridis). If A,B are non-empty subsets of some abelian

group, and

|A+B| ≤ K|A|,

then there exists a non-empty set X ⊆ A such that

|X +B + C| ≤ K|X + C| (3)

for every set C.

Proof. The following proof, due to Petridis, is a great simplification of Ruzsa’s proof,

which in turn is a great simplification of arguments implicit in the work of Plünnecke.

The proof below is highly unusual for extremal combinatorics, being a direct proof by

induction.

Let X be a non-empty subset of A that minimizes the ratio |X +B|/|X|. Let

K ′ =
|X +B|
|X|

. (4)

It is clear that K ′ ≤ K. We will show, by induction on |C|, that

|X +B + C| ≤ K ′|X + C| for all C.

The base |C| = 1 follows from (4). Suppose |C| ≥ 2. By translating C if necessary,

we may assume that 0 ∈ C. Let C ′ = C \ {0}, and define

Y = {x ∈ X : x+B ⊂ X +B + C ′}.

Then

(X +B + C ′ ∪ {0}) \ (X +B + C ′) = (X +B + {0}) \ (X +B + C ′)

= (X +B) \ (X +B + C ′)

⊆ (X +B) \ (Y +B).

Hence,

|(X +B + C ′ ∪ {0}) \ (X +B + C ′)| ≤ |X +B| − |Y +B|
= K ′|X| − |Y +B|
≤ K ′|X| −K ′|Y | by minimality of X

= K ′|X \ Y |.
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To establish (3), since |X + C ′ ∪ {0}| − |X + C ′| = |X \ (X + C ′)|, it remains to show

that |X \ Y | ≤ |X \ (X + C ′)|, or equivalently

|(X + C ′) ∩X| ≤ |Y |.

However, (X + C ′) ∩X ⊂ Y .

From Lemma 4 it is easy to deduce bounds on A + A + · · · + A in terms of A + A.

Let sA denote the sumset A+A+ · · ·+A with s summands.

Theorem 5. If s, t are positive integers, and |A+A| ≤ K|A| then

|sA− tA| ≤ Ks+t|A|.

In particular (1) holds.

Proof. Let B = A, and X be as in Lemma 4, then

|X +A+ C| ≤ K|X + C|

for every C. From that it follows that |X + sA| ≤ K|X + (s− 1)A| and so, by induction

on s, that

|X + sA| ≤ Ks−1|X +A|.

As the inequality |U − V | ≤ |U + W ||V + W |/|W | follows from the difference triangle

inequality, which we have already proved, we deduce that

|sA− tA| ≤ |X + sA||X + tA|
|X|

≤ Ks−1 |X +A||X + tA|
|X|

≤ Ks|X + tA| ≤ KsKt|A|.

Similarly we can prove the sum triangle inequality.

Proof of Theorem 2. We shall show that |B + C| ≤ |A+B||A+C|
|A| .

Let X be a subset of A minimizing the ratio |X +B|/|X|. Let K be this ratio. Then

by Lemma 4 we have

|X +B + C| ≤ K|X + C|.

Since K ≤ |A+B|/|A| we obtain

|A||B + C| ≤ |A||X +B + C| ≤ K|A||X + C| ≤ |A+B||X + C| ≤ |A+B||A+ C|.

Ruzsa’s covering lemma The second main ingredient for proving inequalities between

sumsets is the Ruzsa’s covering lemma.

Theorem 6 (Ruzsa’s covering lemma). For every non-empty sets A,B in some abelian

group, there exists a set X ⊆ B such that

B ⊂ A−A+X

with |X| ≤ |A+B|/|A|.
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Proof. Let X be a maximal subset of B such that the translates {A + x : x ∈ X}
are disjoint. Let b ∈ B be arbitrary. Since A + b intersects A + X, it follows that

b ∈ (A+X)−A = A−A+X. As b is arbitrary, B ⊂ A−A+X. The bound on the size

ofX follows since the translates are disjoint and their union is of size |A+X| ≤ |A+B|.

Corollary 7. If a set A satisfies |A + A| ≤ K|A|, then there is a X of size |X| ≤ K4

such that 2A−A ⊂ A−A+X

Proof. Let B = 2A− A. From Theorem 5 it follows that |B − A| = |2A− 2A| ≤ K4|A|.
The rest follows from the covering lemma.

Freiman’s theorem in a group with bounded torsion As an application, we prove

a version of Freiman’s theorem in the case where the ambient group is of bounded torsion.

Namely, we say that an abelian group G is of torsion r if each x ∈ G satisfies rx = 0.

Note that this implies, in particular, that (r − 1)x = −x, and so 〈A〉 =
⋃

k≥0 kA, where

〈A〉 is the subgroup of G generated by A.

Theorem 8 (Freiman’s theorem in bounded torsion groups). Let r ∈ N be fixed. Suppose

G is a group of torsion r, and A ⊂ G is a subset satisfying |A + A| ≤ K|A|. Then A is

contained in a subgroup of G of size at most f(r,K)|A| for some function f of r and K

only.

Proof. By Corollary 7 there is X ⊂ A such that 2A − A ⊂ A − A + X and |X| ≤ K4.

Thus, 3A−A = A+(2A−A) ⊆ A+(A−A+X) = 2A−A+X ⊆ A−A+2X. Similarly,

we deduce that kA−A ⊆ A−A+(k−1)X for every k ∈ N. Let 〈X〉 denote the subgroup

of G generated by X. We thus have kA − A ⊆ A − A + 〈X〉 for every k. Since every

element of 〈A〉 is in kA−A for some k, we deduce that

〈A〉 ⊆ A−A+ 〈X〉

Thus, |〈A〉| ≤ |A−A||〈X〉| ≤ K2r|X||A| ≤ K2rK
4 |A|.

A word about non-abelian groups The naive analogue of Plünnecke’s inequality is

false in non-commutative groups. As an example, let F2 be the free group on generators

x and y and consider A = {yt : 0 ≤ t ≤ n} ∪ {x}. Then AA = {yt : 0 ≤ t ≤ 2n} ∪ {xyt :

0 ≤ t ≤ n} ∪ {ytx : 0 ≤ t ≤ n} ∪ {x2}. The set A has n + 2 elements, and AA has

(2n+ 1) + 2(n+ 1) + 1 = 4n+ 4 elements. So, |AA|/|A| ≤ 4. However AAA contains a

subset {ysxyt : 0 ≤ s, t ≤ n} of size n2.

It is true however that if |AAA|/|A| is small, then |At|/|A| is small for every t.
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