Walk through Combinatorics: homework #4* Due 5 November 2014, at start of class

Collaboration and use of external sources is **forbidden**. If unsure, ask me first.

The number of points for each problem is specified in brackets. The problems appear in no special order.

- 1. [2] Show that for each r there is m = m(r) with the following property: If $\mathcal{H} = (V, E)$ is an r-uniform hypergraph such that every vertex is in at least m edges, then it is possible to find a partition $E = E_1 \cup E_2$ such that for each vertex v there are $e_1 \in E_1$ and $e_2 \in E_2$ such that v is both in e_1 and e_2 .
- 2. [1+1] Let G be a graph, and let H be a graph obtained from G by deleting each edge with probability 1/2. Let $\chi(G)$ and $\chi(H)$ be the chromatic numbers of G and H.
 - (a) Show that $\mathbb{E}[\chi(H)] \ge \chi(G)^{1/2}$. (Hint: consider the complement of H).
 - (b) Show that $\Pr[\chi(H) < c\chi(G)^{1/2}] \le f(c)$ for an explicit function f satisfying $f(c) \to 0$ as $c \to 0$.
- 3. [2] A path of even length $P = v_1 v_2 \cdots v_{2k}$ in a graph (V, E) with a vertex coloring $f: V \to [r]$ is *periodic* if $f(v_j) = f(v_{j+k})$ for all j satisfying $1 \le j \le k$. Prove that there exists a constant r such that every graph G with maximum degree 5 admits a vertex r-coloring in which no path of any even length is periodic.
- 4. [2] For a permutation π , let $X = X(\pi)$ be the least number m such that π is a product of m cycles. Show that there is a constant C such that if one picks π uniformly at random from the symmetric group S_n , then

$$\Pr[|X - \mathbb{E}[X]| \ge C\sqrt{n}] \le 0.01$$

^{*}This homework is from http://www.borisbukh.org/DiscreteMath14/hw4.pdf.

21-701: Walk through Combinatorics

5. [2] Show that there exists a function t(n) satisfying $t(n) = o(\sqrt{n})$ such that for each *n* there exists an interval I_n of length t(n) satisfying the following: If *G* is a graph chosen uniformly at random among all graphs on the vertex set [n], then $\Pr[\chi(G) \in I_n] \ge 0.99$. (Note that we proved a weaker result in class.)