Walk through Combinatorics: homework #3*
Due 22 October 2014, at start of class

Collaboration and use of external sources are permitted, but discouraged, and
must be fully acknowledged and cited. Collaboration may involve only discussion;
all the writing must be done individually.

The number of points for each problem is specified in brackets. The problems
appear in no special order.

1. [1] Let A be a random subset of $[n]$ such that $\Pr[t \in A] = p$ and the events
$t \in [n]$ are independent. Let E denote the event that A contains a 4-term
arithmetic progression.

Find a function $t(n)$ such that

- if $p = o(t(n))$, then $\Pr[E] \to 0$; and
- if $p = w(t(n))$, then $\Pr[E] \to 1$.

2. [2] Let $0 < \alpha < 1$ be a rational number, let $\varepsilon > 0$ be arbitrary, and let m
be a fixed natural number. Show that for all $n > n_0(\alpha, \varepsilon, m)$ satisfying
an $a \in \mathbb{Z}$
there exist sets $A_1, \ldots, A_m \subset [n]$ of size an each such that $|A_i \cap A_j| \leq (\alpha^2 + \varepsilon)n$
for all distinct $i, j \in [m]$.

3. [1] Suppose X is a random variables taking nonnegative integer values. Show
that

$$\Pr[X = 0] \leq \frac{\text{Var}[X]}{\mathbb{E}[X^2]}$$

(You may assume that $\mathbb{E}[X^2]$ is non-zero, and is finite.)

4. [2] Write down an explicit positive constant c such that the following holds
for all natural numbers n. Suppose a_1, \ldots, a_n are n real numbers satisfying
$\sum_{i=1}^{n} a_i^2 = 1$, and $\epsilon_1, \ldots, \epsilon_n \in \{-1, +1\}$ are uniformly and independently
chosen signs. Then

$$\Pr \left[\left| \sum_{i=1}^{n} \epsilon_i a_i \right| \leq 1 \right] \geq c.$$
5. [2] Let $\vec{v}_1 = (x_1, y_1), \ldots, \vec{v}_n = (x_n, y_n)$ be n vectors in \mathbb{Z}^2 satisfying $|x_i|, |y_i| \leq \frac{\sqrt{n}}{100 \sqrt{n}}$. Show that there are two disjoint distinct sets $I, J \subseteq [n]$ such that
\[\sum_{i \in I} \vec{v}_i = \sum_{j \in J} \vec{v}_j. \]

6. [2 extra credit] Let $\chi(G)$ denote the chromatic number of a graph G. Show that for each r there exists a number $M = M(r)$ such that every graph G of chromatic number M contains a subgraph G' with $\chi(G') \geq r$ and the girth at least 4.