
Walk through Combinatorics:
Regularity lemma∗

The regularity lemma was conceived to prove Szemerédi’s theorem on k-term
arithmetic progressions, but has since grown into a powerful principle that applies
to a multitude of mathematical objects. Here we restrict to graphs, which is the
setting of the original Szemerédi’s regularity lemma. The key notion is that of a
density:

Definition. Let G = (V,E) be a graph, and A,B ⊂ V be disjoint sets of vertices.
The edge density between A and B is defined by

d(A,B) = e(A,B)/|A||B|,

where e(A,B) is the number of edges between A and B.

In other words, the edge density is the probability that a randomly chosen pair
of vertices (a, b) ∈ A×B spans an edge.

For the motivation we consider a random bipartite graph with bipartition (A,B)
such that each pair (a, b) ∈ A× B spans an edge with probability p with different
edges being independent. It is easy to see that d(A,B) ≈ p with high probability;
in fact a simple calculation with Chernoff’s inequality and the union bound shows
that d(A′, B′) ≈ p for all pairs of A′ ⊂ A and B′ ⊂ B that are not too small. This
suggests the following definition:

Definition. A pair A,B ⊂ V (G) of disjoint sets is ε-regular if for each choice of
sets A′ ⊂ A and B′ ⊂ B satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B| we have∣∣d(A′, B′)− d(A,B)

∣∣ ≤ ε.

The lower bound on sizes A′ and B′ is natural, for if it is absent, and we can
take |A′| = |B′| = 1, the definition is overpowered.

The non-technical content of Szemerédi’s regularity lemma is that every graph
can be partitioned into only a few sets such that almost every pair of these sets is
ε-regular. The precise statement is captured in the next definition:

Definition. An ε-regular partition of a graph G = (V,E) is a partition of the
vertex set V = J ∪ V1 ∪ · · · ∪ Vk that satisfies the three conditions:

∗These notes are available from http://www.borisbukh.org/DiscreteMath12/notes_

regularity.pdf.
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1. (Junk is small) |J | ≤ ε|V |,

2. (Equipartition) |V1| = · · · = |Vk|,

3. (Regularity) All but at most εk2 pairs (Vi, Vj) are ε-regular.

Theorem 1 (Szemerédi’s regularity lemma). For every ε > 0 and every m there
is an M such that each graph admits an ε-regular partition into k parts, where
m ≤ k ≤M .

The regularity lemma does not say anything about the behavior of the edges
that are wholly contained in a single part of a partition. It is thus the role of
parameter m to ensure that there only a few such edges. Indeed, we have(

|J |
2

)
+
∑
i

(
|Vi|
2

)
≤ ε2n2 + k(n/k)2 ≤ (ε2 + 1/m)n2.

The idea of the proof is simple and powerful: starting with an arbitrary par-
tition, successively refine the partition into more and more regular partition. To
measure the progress toward regularity we introduce the function

f(A,B)
def
=
|A|
|V |
· |B|
|V |

d(A,B)2.

For a partition P of V we define

f(P)
def
=
∑

A,B∈P
A 6=B

f(A,B).

[ The choice of f is not unique. We could have replaced d(A,B)2 by another strictly
convex function of d(A,B). Our choice is the simplest. For information-theoretic
interpretation of the proof that uses the entropy function, see “Regularity lemma
revisited” by Terence Tao. ]

An important property of f is that f(P) ≤ 1 for every partition P . Indeed,

f(P) =
∑

A,B∈P
A 6=B

|A|
|V |
· |B|
|V |

d(A,B)2 ≤
∑

A,B∈P

|A|
|V |
· |B|
|V |

= 1.

The second property is that f increases under refinements1. We first state this
for a single pair (A,B):

Lemma 2. Suppose A,B ⊂ V are two disjoint sets, and A = A1 ∪ · · · ∪ Ak and
B = B1 ∪ · · · ∪Bl are their respective partitions, then∑

i,j

f(Ai, Bj) = f(A,B) +
∑
i,j

(
d(A,B)− d(Ai, Bj)

)2 |Ai||Bj|
|V |2

.

1A partition P ′ is a refinement of P if each A′ ∈ P ′ is fully contained in some A ∈ P
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Proof. Mindless calculation gives∑
i,j

(
d(A,B)− d(Ai, Bj)

)2|Ai||Bj| = d(A,B)2
∑
i,j

|Ai||Bj| − 2d(A,B)
∑
i,j

d(Ai, Bj)|Ai||Bj|

+
∑
i,j

d(Ai, Bj)
2|Ai||Bj|

= d(A,B)2|A||B| − 2d(A,B)e(A,B)

+
∑
i,j

d(Ai, Bj)
2|Ai||Bj|,

= −f(A,B)|V |2 +
∑
i,j

d(Ai, Bj)
2|Ai||Bj|.

The identity in Lemma 2 is a form of Cauchy–Schwarz inequality, for the latter
is the glorification of the inequality 〈x − y, x− y〉 ≥ 0 that is true for any vectors
x and y.

Corollary 3. Suppose A,B ⊂ V are two disjoint sets, and A and B are partitions
of A and B respectively. Suppose further than A′ and B′ are refinements of A and
B. Then ∑

A′∈A′

B′∈B′

f(A′, B′) ≥
∑
A∈A
B∈B

f(A,B).

Proof. The inequality follows by applying Lemma 2 to each pair (A,B).

While in the definition of ε-regular partition there is only one junk part, in the
proof it is convenient to use several. We will ensure that the total size of the junk
is kept small, and lump all the junk parts into one at the end of the proof.

At each step of the proof we will work with a partition P of V , say V =
J1 ∪ · · · ∪ Jl ∪ V1 ∪ · · · ∪ Vk, satisfying |V1| = · · · = |Vk|, and

∑
|Ji| ≤ ε|V |. Suppose

that the partition is not regular, i.e., there are more than εk2 irregular pairs (Vi, Vj).

For each irregular pair (Vi, Vj) we pick two sets V
(i,j)
i,1 ⊂ Vi and V

(i,j)
j,1 ⊂ Vj such that

|V (i,j)
i,1 |, |Vj,1|(i,j) ≥ ε|Vi| and∣∣d(V

(i,j)
i,1 , V

(i,j)
j,1 )− d(Vi, Vj)

∣∣ > ε.

Let V
(i,j)
i,2 = Vi \ V (i,j)

i,1 and V
(i,j)
j,2 = Vj \ V (i,j)

j,1 . By Lemma 2 we have

∑
1≤s,t≤2

f
(
V

(i,j)
i,s , V

(i,j)
j,s

)
≥ f(Vi, Vj) + ε2

|V (i,j)
i ||V (i,j)

j |
|V |2

≥ f(Vi, Vj) + ε4/4k2. (1)

A given Vi might form an irregular pair with many Vj, giving rising to many

distinct partitions Vi = V
(i,j)
i,1 ∪ V

(i,j)
i,2 . Let Vi be the partition of Vi that is the

common refinement of all the partitions of the form Vi = V
(i,j)
i,1 ∪ V

(i,j)
i,2 . Since there
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are only k non-junk parts, Vi contains at most 2k−1 parts. Corollary 3 and (1)
imply that ∑

A∈Vi
B∈Vj

f(A,B) ≥ f(Vi, Vj) + ε4/4k2.

Define Pnew to be the partition obtained from P by refining each Vi by Vi. We
have

f(Pnew) =
∑
Pnew
junk

f(A,B) +
∑
Pnew

non-junk

f(A,B),

where the first sum is over distinct pairs (A,B) such that either A or B is a junk
part, and the second sum is over distinct pairs (A,B) such that neither A nor B
is a junk. We shall show that the non-junk sum is substantially larger than its
counterpart in f(P):∑

(A,B)∈P2
new

non-junk

f(A,B) =
∑
i,j

∑
A⊂Vi
B⊂Vj

f(A,B) =
∑

(i,j) regular

+
∑

(i,j) irregular

≥
∑
i,j

f(Vi, Vj) +
∑

(i,j) irregular

ε4/4k2

≥
∑
P

non-junk

f(A,B) + (εk2)ε4/4k2.

Since the contribution to f
(
Pnew

)
are no less than those in f(P) (by Lemma 2) we

conclude that
f
(
Pnew

)
≥ f(P) + ε5/4.

The partition Pnew is an improvement over P , save for one blemish: the non-
junk parts are no longer equally large. To fix this we refine the partition once again.
We partition each non-junk set in Pnew into sets of size exactly bε|V |/k4kc, and
one leftover set of size smaller than bε|V |/k4kc. We then declare each leftover set
to be a junk set. Since each part of P is partitioned into at most 2k−1 parts, the
total size of leftover parts is at most k2k−1bε|V |/k4kc ≤ ε|V |2−k. The refinement
of Pnew can only increase value of f . We need to check that the total size of the
junk does not grow above ε|V | as we repeat the procedure above. Indeed, as the
number of parts k increases at each step, the total size of all junk parts does not
exceed

∑
k ε|V |2−k = ε|V |.

As the value of f(P) increases by ε5/4 at each step and f(P) ≤ 1, this process
terminates after at most 4/ε5 steps. When it terminates, we obtain an ε-regular
partition. At each step the number of non-junk parts grows as knew ≤ g(k) where
g(k) = k4k/ε. Thus, we can take M = g◦4/ε

5
(m). In other words, M is a tower

of exponentials of height approximately ε−5. Surprisingly, this bound is essentially
tight, for Timothy Gowers exhibited a graph such that the number of parts in every
ε-regular partition is a tower of exponentials of height at least ε−1/16 (in the paper
“Lower bounds of tower type for Szemerédi’s uniformity lemma”).
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