
Walk through Combinatorics:
Chromatic number of a random graph∗.

(Version 3b: revised 8 October 2021)

A proper coloring of a graph G is an assignment of colors to vertices of G
such that no edge is monochromatic (its two vertices receive the same color).
The chromatic number of G is the least number of colors in a proper coloring
of G. An alternative way to think of chromatic number is that it is the fewest
number of independent sets needed to cover all the vertices of G. The chromatic
number of G is traditionally denoted by χ(G).

Let G ∼ G(n, 1/2), i.e G is a graph obtained by picking edges of G with
probability 1/2 independently of the other edges, or simpler put, G is a graph
sampled uniformly among all graphs on n vertices. What is the chromatic num-
ber of G? It can be anything, of course, but most likely it is about n/2 log2 n.

Theorem 1. Let G ∼ G(n, 1/2). Then

Pr
[
χ(G) =

(
1 + o(1)

) n

2 log2 n

]
→ 1 as n→∞.

The theorem is a combination of a lower bound and an upper bound. We
begin with the lower bound, as it is simpler of the two.

A proper coloring is a covering by independent sets. Hence, nonexistence of
a proper coloring in at most n/k colors would follow from nonexistence of an
independent set of size k. We will chose k ∼ 2 log2 n, and will show that G is
unlikely to contain an independent set of size k. As independent sets become
cliques upon taking the complement, it is equivalent to show that G is unlikely
to contain a k-clique1

Let X be the number of k-cliques in G. We have

E[X] =
∑

S∈([n]
k )

Pr
[
S is a k-clique

]
=

(
n

k

)
2−(k

2).

∗These notes are from http://www.borisbukh.org/DiscreteMath12/notes_chromatic.

pdf
1The sole reason we prefer cliques to independent sets is that the former require 9 fewer

keystrokes.
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(
G(n, 1/2)

)
Write f(k) for

(
n
k

)
2−(k

2). As Pr[X ≥ 1] ≤ E[X], it follows that if f(k)→ 0, then
Pr[X ≥ 1]→ 0. Let’s find k for which this holds.

The equation
(
n
k0

)
2−(k0

2 ) = 1 can be easily solved approximately: Taking

the logarithms we obtain k2
0/2 = k0 log2 n + O(k0 log k0), which simplifies to

k0 = 2 log2 n + O(log k0). Self-substitution yields k0 = 2 log2 n + O(log log n).
Furthermore if k = 2 log2 n+O(log log n), then

f(k)/f(k + 1) =

(
n
k

)
2−(k

2)(
n

k+1

)
2−(k+1

2 )
=
k + 1

n− k
· 2k ≥ 1

n
· 2
(

2+o(1)
)

log2 n = n1+o(1).

Hence, Pr[X ≥ 1] ≤ f(k) → 0 rapidly as k increases above k0. This proves
the lower bound.

The upper bound is more intricate. We need to show that G(n, 1/2) can
be covered by

(
1 + o(1)

)
n/2 log2 n cliques with high probability. There are two

clever ideas to the proof. Let m = bn/ log2 nc. The first idea is to reduce the
problem to showing that the event

“all sets of size m contain a k-clique”

is very likely. Indeed, suppose the event holds. Then we can find the required
covering in two stages. In the first stage, we select k-cliques, remove the vertices
contained in them, and repeat until fewer than m vertices are left. In the second
stage, we treat each vertex as a 1-clique. The total number of cliques would
then be at most n/k+m = n/2 log2 n+O(n/ log2 n), which is the desired upper
bound.

A natural goal is to show that if S is an m-element set, then

psmall
def
= Pr

[
S contains no k-clique

]
is so tiny, as to make

Pr[∃S that contains no k-clique
]
≤
∑

S∈([n]
m)

Pr
[
S contains no k-clique

]
= psmall

(
n

m

)

tend to zero. The problem is that
(
n
m

)
is exponential, namely(

n

m

)
≤ nm = eΘ(n/ logn).

Our aim is thus to show that psmall is exponentially small, which we will do.
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(
G(n, 1/2)

)
Proof that Pr[G(n, 1/2) contains no k-clique] = exp

(
−n2−o(1)

)
. In this

section we write n for what used to be m. Consider G ∼ G(n, 1/2). Then
psmall = Pr

[
G contains no k-clique

]
. The first impulse is to bound psmall via

Chebyshev’s inequality. Let X be the number of k-cliques in G. Then

Pr[X = 0] ≤ Pr
[
|X − E[X]| ≥ E[X]

]
≤ Var[X]

E[X]2
.

Sadly, this inequality is just too weak because the dependence on E[X] is only
polynomial. It is thus natural to use a large deviation inequality, such as Azuma’s
inequality.

The difficulty with using Azuma’s inequality is that X is far from being
Lipschitz. Adding a single edge to G might increase the number of k-cliques by(
n−2
k−2

)
. So, one replaces X by a random variable that behaves similarly to X, but

that is Lipschitz. The second clever idea is the choice of this random variable.
Let Y be the maximal number of edge-disjoint k-cliques in G. It is clear that

Y is Lipschitz — removing an edge destroys at most one k-clique. It remains to
show that E[Y ] is large. Let F be the family of all the k-cliques in G. Define an
auxiliary graph H whose vertex set is V (H) = F and whose edges are given by
the rule that S1, S2 ∈ F form an edge if k-cliques on S1 and S2 share an edge.
In symbols, S1 ∼H S2 ⇐⇒ |S1 ∩ S2| ≥ 2. The random variable Y is precisely
the independence number of H, and so if we show that H has only a few edges,
we can invoke Turán’s theorem to bound Y from below.

To use Turán theorem, we need to get an estimate on the number of vertices
and on number of edge of H. We can use Chebyshev’s inequality to show both
|V (H)| and |E(H)| are concentrated near their expectations. Computing the
variance of |V (H)| and |E(H)| is annoying, so it is simpler to use only the
expectations and import the proof of existence of a large independence set in
sparse graphs.

We have E
[
|V (H)|

]
= f(k), and

E
[
|E(H)|

]
=

∑
S1,S2∈([n]

k )
|S1∩S2|≥2

Pr[S1 &S2 are k-cliques]

=
∑
S1

∑
t≥2

∑
S2

|S1∩S2|=t

2−2(k
2)+(t

2)

=

(
n

k

)∑
t≥2

(
k

t

)(
n− k
k − t

)
2−2(k

2)+(t
2)

= f(k)2−(k
2)
∑
t≥2

g(t),
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(
G(n, 1/2)

)
where

g(t) =

(
k

t

)(
n− k
k − t

)
2(t

2).

The main contribution to the sum above is g(2), for the other terms are much
smaller. First of all, the term on the other extreme, g(k) is smaller by direct
calculation:

g(2)/g(k) = 2−(k
2)
(
k

2

)(
n− k
k − 2

)
=

(
k

2

)
f(k)

(
n−k
k−2

)(
n
k

) ≈ f(k)n−2k4.

We shall choose k so that f(k) = Ω(n3) to make this ratio o(1).
It remains to show that g(t) for 2 < t < k are small. For that we compute

the ratio of consecutive terms to be

g(t)

g(t+ 1)
=

(
k
t

)(
n−k
k−t

)
2(t

2)(
k

t+1

)(
n−k

k−t−1

)
2(t+1

2 )
=
t+ 1

k − t
· n− 2k + t+ 1

k − t
2−t.

This ratio is approximately 2−tn/ log2
2 n if t is small, and so the terms of the sum

above decrease super-geometrically at first. At about t = log2 n the ratio drops
below 1, and terms of the sum start increasing. When t is close to 2 log2 n the
ratio is about n−1. Hence, g(2) is indeed the dominant term, and we conclude
that

E
[
|E(H)|

]
≈ 2f(k)2−(k

2)
(
k

2

)(
n− k
k − 2

)
≤ f(k)2k4n−2

provided that f(k) = Ω(n3).
We are ready to select the independent set. Let 0 < p < 1 be a parameter to

be chosen later. Pick each vertex of H with probability p at random indepen-
dently of the others. Let U be the resulting set. Let B be a set of vertices, one
from each edge spanned by U . Then U \B is an independent set. We have

E
[
|U \B|

]
= pE

[
|V (G)|

]
− p2E

[
|E(G)|

]
≥ pf(k)− p2f(k)2k4n−2.

We optimize this by choosing p = 1
2
n2k−4f(k)−1, and obtain

E[Y ] ≥ E
[
|U \B|

]
≥ 1

4
k−4n2.

Hence, by Azuma’s inequality applied to the natural edge-exposure martin-
gale we have

Pr[Y = 0] ≤ Pr
[
|Y−E[Y ]| ≥ E[Y ]

]
≤ exp

(
−E[Y ]2/2

(
n

2

))
≤ exp

(
−Cn2/ log8 n

)
.

Conclusion of the proof It is simple:

psmall

(
n

m

)
≤ exp

(
−Cm2/ log8m

)
2n = exp

(
−n2/ log12 n

)
2n < 1.
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