
Computational geometry: notes 3∗

Geometric range searching: the problem

Let R be a family of subsets of Rd. The elements of R are called ranges.
For example, R might consist of all axis-parallel boxes, or all simplices, or all
halfspaces. We are given a set of n points P ⊂ Rd. The basic goal of the range
searching is to have an algorithm that answers queries about points of P that
fall into a given R ∈ R. The typical queries are

Query type Question answered
Emptiness Is there are single point of P in R?
Counting How many points of P are in R?
Reporting What are the points of P that are in R?

Other kinds of queries are also possible. For example, the points might be
weighted, and the goal is to find the total weight of points in R, or the maximal
weight of a point in R.

The trivial algorithm to answer any of these queries takes Ω(n) steps, as it
inspects every points of P . Moreover, it is evident that if the set P is given
as the part of the input, then one must read every point of P , and thus spend
Ω(n). However, one usually can answer queries faster if P is fixed in advance.
In that case, it is possible to do preprocessing of P .

For example, suppose d = 1, and R is the family of all intervals. Then by
sorting P we can locate the endpoints of the interval R inside P in O(log n)
steps. Then the emptiness queries can be answered immediately, and so is the
weight counting queries if we store the total weight of the entries to the left of
a given entry. The reporting queries can be answered in further O(k) time, for
the total of O(log n + k), where k is the number of points that happen to fall
into R.

The range searching is a common problem in computational geometry. Its
most obvious occurrence is in databases. For example, a query to the population
database might ask how many people falling in the given age interval live within
100 km from a given point, which is a query on R2×R+ with the range R being
the cylinder1. More commonly the range searching appears as a subproblem in
other problems in computational geometry. For example, suppose we are given

∗These notes are from http://www.borisbukh.org/CompGeomEaster11/notes3.pdf.
1We assume that the Earth is isometric to R2.

1

http://www.borisbukh.org/CompGeomEaster11/notes3.pdf

a set of n points P , and we wish to find all the pairs of points of P that are
distance at most 1 from one another. It turns out that by preprocessing the
points of P , so that one can quickly answer reporting queries for disks, one can
achieve the running time of O(n2−ε + k).

The different kinds of queries can be treated uniformly by introducing a
commutative semigroup (S, +), and assigning to each point p ∈ P a “weight”
of w(p) ∈ S. The query then asks for the value of

∑
p∈R w(p). For example, for

the weighted counting query the semigroup is (R,+), for the maximum weight
query the semigroup is (R,max), and for the reporting query the semigroup is
(2P ,∪). We assume that the semigroup operations take O(1) time.

The semigroup model is very convenient, but it fails in two ways. First,
sometimes the underlying structure is richer than a semigroup. For example,
above we used subtraction in the group (R,+) to answer weighted counting
queries for the intervals in d = 1. Second, when dealing with reporting queries
we must spend time k to simply output the answer. Thus, we can afford to spend
up to O(k) extra operations without affecting the asymptotic time complexity.

It is important to note that in the weighted counting in R1 using the sub-
traction in (R,+) was helpful, but not necessary. It is possible to solve the
problem using only addition. Let P ⊂ R1, and assume for simplicity that the
number of points is a power of two2, say n = 2r. We will build a rooted binary
tree with 2r+1 − 1 nodes. Each node corresponds to an interval of the form
(t2i, (t + 1)2i], and the interval I is the interval I ′ if the I ⊂ I ′. In the node I
we store the total weight of the points belonging to I.

[1, 9]

w = 6

[1, 2]

w = 1

[1, 1]

w = 2

[2, 2]

w = −1

[7, 9]

w = 5

[7, 7]

w = 4

[9, 9]

w = 1

A tree for the four-point set with weights w(1) = 2, w(2) = −1, w(7) = 4 and w(9) = 1.

Given this data structure the following simple algorithm output the sum of
weights in a given interval.

2If the number of points is not a power of two, from asymptotic point of view it is easier
to simply add dummy points, for it costs only a factor of two.

2

Algorithm 1 ComputeWeight algorithm
1: procedure ComputeWeight(range R, tree with the root I) . Outputs

the total weight of the points in R
2: if R ∩ I = ∅ return 0.
3: if I ⊂ R return w(I).
4: W ← 0 . R overlaps I partially
5: for each child I ′ of I do
6: W ←W + ComputeWeight(R, I ′)
7: end for
8: return W.
9: end procedure

The algorithm takes O(log n) time because it visits a node only if it partially
overlaps R. Such nodes lie on two paths from the root, one for each endpoint.
The storage space is proportional to the number of nodes which is 2r+1 − 1 =
O(n).

Range searching: partition trees

The tree we constructed in the previous section is an example of a partition tree.
Its nodes are sets, and in each node we store precomputed sum of the weights.
Most range searching algorithms are based on the same idea.

Consider halfspace ranges in R2. A simple partition tree is based on division
R2 into four parts by a pair of lines, with each part containing at most dn/4e
points of P . Each of the parts is further divided in four subparts in the same
manner, and so one. When presented with a halfspace R we can compute w(R)
using the ComputeWeight algorithm. The time it takes is again proportional
to the number of parts that R overlaps only partially. Let f(n) be the maximum
number of parts that R partially overlaps for the partition tree based on n points.
Among the four original parts R either misses or fully contains at least one part,
which leads to the recursion

f(4n) ≤ 3f(n)

Thus f(n) ≤ O(nlog4 3) = O(n0.792...). As the number of nodes is O(
∑

k≥0 n/4k) =
O(n), the amount of storage is linear too.

The same partition tree and same algorithm ComputeWeight can be used
to answer the triangle range queries. If R is a triangle, which is the intersection
of halfspaces R1, R2 and R3, then the nodes that ComputeWeight visits on
input R are among the nodes that it visits on inputs R1, R2 and R3. Hence,
the running time is similarly bounded.

3

Range searching: O(n
1
2+ε) algorithm in R2

Next we present a method based on partition trees for answering range queries

in O(n
1
2+ε) in R2. The basic result we need is the following theorem.

Theorem 16. Let P be a set of n points in Rd. Let D > 0 be an arbitrary
integer. Then there exists a polynomial f ∈ R[x1, dotsc, xd] of degree at most D

such that the set Z(f) def= {f = 0} partitions R2 into open regions each containing
at most O(n/Dd) points of P .

Corollary 17. For every ε > 0 there is an linear-storage algorithm that answers

halfspace queries in R2 in O(n
1
2+ε) time.

Proof. Let D be large, but fixed. Consider the partition tree on P obtained
by iterating the partition of theorem 16. If L is any line in R2, then L either
lies in Z(f) or meetsZ(f) in at most D points since the restriction of f on L
is a polynomial of degree at most D. Thus, L meets at most D + 1 regions.
Since ComputeWeight on a halfspace H visits only those regions that are
intersected by the line L + ∂H, we obtain the following recursive bound on the
query time T (n) for the set of n points:

T (n) ≤ (D + 1)T (n/D2) + cD,

where cD is the cost of locating the D + 1 regions that ∂f intersects. Solving
the recurrence we obtain T (n) ≤ c′DnlogD2 (D+1). If D is chosen large enough for
logD2(D + 1) < 1

2 + ε, we obtain the requisite running time.

The theorem 16 is a consequence of the following lemma in the case d = 2.

Lemma 18. Let m =
(
D+d

d

)
− 1, and suppose P1, . . . , Pm ⊂ Rd are finite point

sets. Then there exists a polynomial g such that∣∣{g < 0} ∩ Pi

∣∣, ∣∣{g > 0} ∩ Pi

∣∣ ≤ |Pi|/2.

Proof. Let M be the set of all non-constant monomials of degree at most D.
Then |M | = m. Define the embedding3 π : Rd → RM by

π(p)τ = τ(p) for all τ ∈M.

By ham-sandwich theorem there is a hyperplane H = {
∑

τ∈M αττ = α0} such
that ∣∣π(Pi) ∩H+

∣∣, ∣∣π(Pi) ∩H−∣∣ ≤ |Pi|/2.

Since f(p) > 0 if and only if π(p) ∈ H+, it follows that

{f > 0} ∩ Pi = π−1
(
H+ ∩ π(Pi)

)
,

and similarly for {f < 0} ∩ Pi.
3This embedding is called the Veronese embedding.

4

Proof of theorem 16. We define a sequence P0,P1, . . . of partitions of P and
a matching sequence of polynomials f0, f1, We start with P0 = {P} and
f0 = 1. At the i’th step, for i = 1, 2, . . . , with aid of lemma 18 we choose gi to
be a polynomial that partitions each P ∈ Pi−1 into sets of size at most |P |/2.
We set fi = fi−1gi and

Pi =
{
P ∩ {gi > 0} : P ∈ Pi−1} ∪

{
P ∩ {gi < 0} : P ∈ Pi−1}.

This way fi partitions P into sets each of which is contained in some member
of Pi. Since deg gi ≤ cd|Pi−1|1/d and |Pi| = 2i we obtain

deg fi =
i∑

j=1

deg fi ≤
i∑

j=1

cd2(i−1)/d = c′d2
i/d = c′d|Pi|1/d.

If i is the largest index for which deg fi ≤ D, then deg fi ≥ D/2, and Pi contains
Ω(Dd) regions.

Problems

1. Suppose P1 ⊂ R2 and P2 ⊂ R2 are two sets of n points each. Pick points
p1 and p2 uniformly from P1 and P2 respectively.

(a) Show that the probability that the line l = p1p2 contains fewer than
βn points of P1 on one of the sides is at most 2β.

(b) For any ε < 1/4 devise a linear-time probabilistic algorithm that
finds a line that splits each of P1 and P2 parts of size at least εn
each.

(c) (Harder) Show that for every β < 1/2 the probability the line l cuts
both P1 and P2 into pieces no smaller than βn is at least p = p(β) > 0
for some p.

2. (a) Show that if f ∈ R[x, y] has degree D, then Z(f) partitions R2 into
at most O(D2) regions. [Pick a point in each region, and consider a
curve of small degree containing each of the points.]

(b) Give a linear-storage algorithm with query time O(n2/3+ε) for an-
swering halfspace queries in R3.

(c) (Hard) Show that the zero set of f ∈ R[x1, . . . , xd] of degree D par-
titions Rd into at most O(Dd) regions. Conclude that there is a
linear-storage algorithm with query time O(n1/(d+1)+ε) for answer-
ing halfspace queries in Rd+1.

5

