
Computational geometry: notes 2∗

Computing volumes: Metropolis chains

Our goal is to sample from a distribution with probability distribution whose
density proportional to f , where f will be a function related to the convex body
C. We shall introduce the rectangular lattice δZd, and shall sample a point x
from the grid with probability proportional to f(x). Then we will “smudge” the
point x, by choosing a random point from the cube of size δ centered at x. The
parameter δ will be chosen small enough so we introduce only little error doing
so, but as small as to make the number of lattice points too large.

The random walk we will employ will be a lazy random walk on points
of δZd, which we now define. To avoid the technical complications with the
infinite state space, we restrict the random to δ[−N,N ]d for some large N (to
be specified later). At each step with probability 1/2, the state of the walk
does not change (this ensures laziness). With remaining probability 1/2, one
chooses one of 2d coordinate directions uniformly. If the walk is currently at the
point x ∈ δZd, and the chosen direction is v, then the walk attempts to move
to y = x + δv. If y 6∈ [−N,N ]d, then the attempt fails. Otherwise, the attempt
succeeds with probability

min
(

1,
f(y)
f(x)

)
. (2)

Therefore, the transition probabilities of the random walk are

P (x, y) =


0 if xandy are not adjacent,
1
4d min

(
1, f(y)

f(x)

)
if x and y are adjacent

1−
∑

y′ P (x, y′) if x = y.

The chain is reversible. Indeed, for any constant c the expression
(
cf(x)

)
P (x, y) =

(c/4d) min(f(x), f(y)) is symmetric in x and y. Therefore, if c is chosen so that
cf(x) is probability distribution, then cf(x) is the stationary distribution of the
random walk. Note that we do need to know only f , but not the normalizing
constant c to perform this random walk.

A chain that has transition probabilities (2) is called a Metropolis chain. It
is powerful tool that allows us to sample according to an arbitrary distribution
f .

∗These notes are from http://www.borisbukh.org/CompGeomEaster11/notes2.pdf.
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Computing volumes: sampling from log-concave
distributions

A function f : Rd → R+ is called log-concave if F = log f is concave, i.e. if

F
(
λx + (1− λ)

)
≥ λF (x) + (1− λ)F (y) for all x, y ∈ Rd and 0 ≤ λ ≤ 1.

Arithmetic-geometric means inequality immediately implies that positive con-
cave functions are log-concave.

The log-concave functions are the cousins of convex sets, and many theorems
that holds for convex sets have an analogue for log-concave functions. There is a
formal connection as well. If C is convex, then its characteristic function is log-
concave (with the convention that log 0 = −∞). Conversely, if f is log-concave
then the set {x : f(x) ≥ 1} is convex.

A function F is called α-Lipschitz if

|F (x)− F (y)| ≤ α‖x− y‖.

We shall assume that F = log f is α-Lipschitz. This condition eliminates the
problems with the boundary of a convex body that we alluded to in the previous
notes. We can already see the relevance of the Lipschitz condition from (2): If
the ratio f(y)/f(x) is small, then the random walk will move slowly.

Computing volumes: an isoperimetric inequality

Originally the term “isoperimetric inequality” referred to the statement that
among all bodies of the same perimeter the disk has the smallest area. Gradually
the term came to describe not only the obvious extension to the volume and
surface area of bodies in higher dimension, but also virtually any inequality
between geometric quantities that quantify “size”, in any sense.

We shall use the following isoperimetric inequality relating the diameter of
the convex body to the size of the cuts that it admits. The diameter of a set C
is the maximum distance between points of C:

diam C = sup{dist(x− y) : x, y ∈ C}.

Associate to the log-concave function f a measure µ defined by µ(S) =
∫

S
f(x) dx.

S1 S2B

Cut B is large.

Theorem 10 (Applegate–Kannan, Dyer–Frieze). Suppose C is a con-
vex body, and µ is measure associated to a continuous log-concave
function f . Let C = S1 ∪S2 ∪B be any partition of C into three sets.
Suppose D ≥ diam C and T ≤ dist(S1, S2).

min
(
µ(S1), µ(S2)

)
≤ 1

2 ·
D

T
µ(B). (3)
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The reduction will preserve D and T , but might change diam C and
dist(S1, S2). We call 1

2
D
T the isoperimetric constant of the inequality.

Note that it suffices to prove that (3) holds for every isoperimetric
constant greater than 1

2
D
T . The isoperimetric constant is a function of D and

T .
The idea of the proof is that it is possible to cut C by a hyperplane, as to

reduce (3) to two similar inequalities. Via repeated cutting we shall replace C
by a convex body that will be “needle-like”, i.e. long in one direction and very
narrow in the other directions. That case will be treated (up to a small error
term) as a 1-dimensional problem.

To do the cutting we need the following.

Lemma 11 (Ham-sandwich theorem). Let µ1, · · · , µd be finite continuous mea-
sures on Rd. Then there exists a hyperplane H such that the halfspace H+ and
H− satisfy

µi(H+) = µi(H−), for all i = 1, . . . , d.

Corollary 12. Let µ be a finite continuous measure on Rd and S1, . . . , Sd be
measurable. Then there exists a hyperplane H such that the halfspace H+ and
H− satisfy

µ(H+ ∩ Si) = µ(H− ∩ Si), for all i = 1, . . . , d.

The ham-sandwich theorem is a consequence of Borsuk–Ulam theorem, which
properly belong to an algebraic topology course, and will not be proved here.
The case d = 2, that we shall use, can be proved directly via the intermediate
value theorem.

Fix a direction v (by “direction” we always mean a unit vector in Rd). We
denote the cross-section of a body C by hyperplane normal to v by

C(s) def= C ∩ {x : 〈x, v〉 = s}.

A body is ε-needle-like in direction v if diam C(s) ≤ ε for all s. A partition
C = S1 ∪ S2 ∪B is a straight in direction v if

Si =
{⋃

C(s) : Si ∩ C(s) 6= ∅
}

for i = 1, 2.

Furthermore, the partition is called fully straight if S1 and S2 are intersections
of C with a halfspace.

Recall that the width of the body C in direction v is

wd(C; v) = sup{〈x− y, v〉 : x, y ∈ C}.

Lemma 13. There is a constant cd > 0 such that for every convex body C there
is a direction v in which the width is wd(C; v) ≤ cd vol(C)1/d.

Proof. From the ellipsoid method, we know that for every C there is an ellip-
soid E containing C, and satisfying vol(E) ≤ (8d

√
d)d vol(C). Since vol(E) =

2−d volB(0, 1)
∏d

i=1 wd(E; v1) where vi are the axes of the ellipsoid, the lemma
follows.
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Lemma 14. To prove Theorem 10 with isoperimetric constant r(D,T ) it suf-
fices to prove it for ε-needle-like bodies with the same isoperimetric constant
r(D,T ; ε), where r(ε) → r as ε → 0.

Proof. Let M be sufficiently large so that f(x) ≥ 1/M for all x. Suppose
theorem 10 fails, and let C = S1 ∪S2 ∪B be a counterexample. Choose ε to be
sufficiently small that

min
(
µ(S1), µ(S2)

)
> r(D,T ; ε)µ(B).

Let v1, . . . , vj be j orthonormal directions such that

wd(C; vi) ≤ ε/
√

d− 1 for each i = 1, . . . , j.

Suppose furthermore that C = S1∪S2∪B is a counterexample with the largest
value of j among all counterexamples. If j ≥ d−1, then C is ε-needle-like with re-
spect to the direction orthogonal to v1, . . . , vd−1. That contradicts the assump-
tion of the lemma. Thus, j ≤ d−2. Since dim

(
span(v1, . . . , vj)⊥

)
≥ 2, by Corol-

lary 12 there is a hyperplane H with normal direction v ∈ span(v1, . . . , vj)⊥

such that µ(H+ ∩ Si) = µ(H− ∩ Si) for i = 1, 2. Without loss of generality
µ(H+ ∩B) ≤ 1

2µ(B).
Let C ′ = C ∩H+, S′1 = S1 ∩H+, S′2 = S′2 ∩H+ and B′ = B ∩H+. Since

the partition C = S1 ∪ S2 ∪ B is a counterexample to the theorem 10, so is
the partition C ′ = S′1 ∩ S′2 ∪ B′ because diam C ′ ≤ diam C and dist(S′1, S

′
2) ≥

dist(S1, S2). Note that µ(C ′) ≤ (1/2)µ(C). We can iterate the bisection, and
obtain an infinite sequence of convex bodies

C = C0 ⊃ C1 ⊃ · · · ⊃ Cm ⊃

Since µ(Cm) ≤ 2−mµ(C), and the function f satisfies f(x) ≥ 1/M , it follows
that vol(Cm) → 0.

Let π : Rd → span(v1, . . . , vj) be the projection. If vol(π(Cm); v) → 0, then
by Lemma 13 there wd(π(Cm)) → 0, which contradicts minimality of j. Oth-
erwise, if we let C̄ =

⋂
m Cm, it follows from vol(C̄) = 0 that all the fibers

are one-element sets. As, the fibers of C agree with those of C̄, we reach a
contradiction.

Our next step is to reduce to the case of a fully straight partition. We shall
do it in two steps. First, we reduce it to a straight partition, and then to a fully
straight partition.

Lemma 15. If Theorem 10 is true for straight partitions of ε-needle-like bod-
ies with the isoperimetric constant rs(D,T ; ε), then it holds for an arbitrary
partition of ε-needle-like bodies with the isoperimetric constant r(D,T ; ε) =
rs(D,T − 2ε; ε).

Proof. Let C be ε-needle-like. Let v be the “long” direction of C. Let

Ŝi =
{⋃

C(s) : Si ∩ C(s) 6= ∅
}

.
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Then dist(Ŝ1, Ŝ2) ≥ dist(Ŝ1, Ŝ2) − 2ε, as well as µ(Si) ≤ Ŝi and µ(B̂) ≥ µ(B).
Hence, it follows that

min
(
µ(S1), µ(S2)

)
≤ min

(
µ(Ŝ1), µ(Ŝ2)

)
≤ rs(D,T−2ε; ε)µ(B̂) ≤ rs(D,T−2ε; ε)µ(B),

and we are done in the light of the previous lemma.

Lemma 16. If Theorem 10 holds for fully straight partitions ε-needle-like bodies
with the isoperimetric constant rfs(D,T ; ε), then it holds for straight partitions
of ε-needle-like bodies with the same constant.

Proof. Fix D and T and write r = rfs(D,T ; ε). Let C = S1 ∪ S2 ∪ B be
a straight partition. Set Ti = {s ∈ R : C(s) ∩ Si 6= ∅}. We may assume
that the connected components of T1 and T2 are alternating intervals, for oth-
erwise we could increase either µ(S1) or µ(S2). Let the connected compo-
nents be [a1, b1], [a2, b2], . . . , [an, bn] in that order. For brevity we also write
Im = [am, bm]. The complement of the union of these intervals is consists of
intervals B1, . . . , Bn−1 in that order. See the picture below.

[a1, b1] B1 [a2, b2] B2
. . . [an, bn]

Without loss of generality odd-numbered intervals are in T1 and even-numbered
are in T2.

We shall abuse the notation and write µ(Im) for µ
(
Im × Rd−1) ∩ C

)
, and

similarly for µ(Bm). The assumption of the lemma tells us that for each m we
have

min(µ(Im), µ(Im+1)) ≤ rµ(Bm).

Our goal is to show that min(µ(T1), µ(T2)) ≤ rµ(B).
Suppose for some even m we have µ(Im) ≥ µ([a1, am]) and µ(Im) ≥ µ([bm, bn]).

Then

µ(S1) ≤ µ([a1, am]) + µ([bm, bn]) ≤ rµ(Bm−1) + rµ(Bm) ≤ rµ(B),

as desired. Otherwise, for each even m either µ(Im) ≤ µ([a1, am]) or µ(Im) ≤
µ([bm, bn]). In either case

µ(Im) ≤ max(rµ(Bm), rµ(Bm+1) ≤ rµ(Bm) + rµ(Bm+1).

Summing over all even m we obtain µ(S2) ≤ rµ(B).

Computing volumes: Brunn–Minkowski inequal-
ity and the conclusion of the proof

To dispose of the fully straight case, we need the classical Brunn–Minkowski
inequality.
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Theorem 17 (Brunn–Minkowski inequality). If A and B are compact and
nonempty, then vol(A + B)1/d ≥ vol(A)1/d + vol(B)1/d.

Proof. A brick set is a union of finitely many axis-parallel boxes with disjoint
interiors. First note that, it suffices to prove the inequality only for brick sets.
Indeed, let A1, A2, . . . be a sequence of brick sets containing A, such that A =⋂

k Ak. Similarly define B1, B2, . . . . If x ∈
⋂

k(Ak + Bk) then x = ak + bk for
some ak ∈ Ak and bk ∈ Bk. By passing to a subsequence, we may assume that
ak → a and bk → b. As a ∈ A and b ∈ B, it follows that x ∈ A + B. Since x
is arbitrary,

⋂
k(Ak + Bk) ⊂ A + B. Since volAk → volA and volBk → volB,

Brunn–Minkowski indeed needs to be proved only for the brick sets.
The proof is by induction on the total number of bricks. To dispose of the

case when A and B consist of a single brick each, we need to show the inequality∏
x

1/n
i +

∏
i y

1/n
i ≤

∏
i(xi +yi)1/n for all positive xi, yi. After division by

∏
i xi

the inequality reduces to

1 +
∏

i

x
1/n
i ≥

∏
i

(1 + xi)1/n. (4)

Since (1 +√
xixj)2 ≤ (1 + xi)(1 + xj), we might assume that all x’s are equal.

However, in that case (4) holds vacuously.
More interesting is the induction step. Suppose A consists of two bricks. Let

H be a coordinate hyperplane such that there is one whole brick of A on each
side of H. Without loss of generality H = {xd = 0}. Let A− = A ∩ {xd ≤ 0},
A+ = A ∩ {xd ≥ 0}, and similarly for B− and B+. Translate the set B so that

λ
def=

volA−

volA
=

volB−

volB
for some ratio λ. Note that translation of B does not affect the volume of A+B.
Since A ∩ {xd ≤ 0} and A ∩ {xd ≥ 0} consist of fewer bricks than A, by the
induction hypothesis

vol(A + B) ≥ vol(A− + B−) + vol(A+ + B+)

≥ [vol(A−)1/d + (B−)1/d]d + [vol(A+)1/d + (B+)1/d]d

= λ[vol(A)1/d + (B)1/d]d + (1− λ)[vol(A)1/d + (B)1/d]d

= [vol(A)1/d + (B)1/d]d.

If we apply Brunn–Minkowski to sections of a single convex body by hyper-
planes normal to a given vector v, we obtain Brunn’s inequality.

Theorem 18 (Brunn’s inequality). Suppose C ⊂ Rd+1 is compact convex body,
and v any direction. Then the function s 7→ (volC(s))1/d is concave on its
support.

Proof. It suffices to deal with a special case. Let A = C(0) and B = C(1),
and λ ∈ (0, 1) arbitrary. We wish to show that vol C(λ)1/d ≥ vol(A)1/d + (1 −
λ) vol(B)1/d. As C(λ) contains λA + (1− λ)B, it suffices to show

vol(λA + (1− λ)B)1/d ≥ λ vol(A)1/d + (1− λ) vol(B)1/d.
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That follows from the Brunn–Minkowski inequality since vol(λA) = λd vol(A)
and vol

(
(1− λ)B

)
= (1− λ)d vol(B).

Proof of theorem 10. The function log f is concave on compact set, it is Lips-
chitz. Let M be the Lipschitz constant of log f . We shall show that the theo-
rem 10 holds for fully straight partitions of ε-needle-like bodies with the isoperi-
metric constant of 1

2 ·e
Mε D

T . Let C be an ε-needle-like body, and C = S1∪S2∪B
be a fully straight partition.

Let s1 and s2 be the largest numbers s.t. K(−s1) and K(s2) are non-empty.
Let L be any line connecting a point of K(s1) and a point of K(s2). For a
real number −s1 ≤ s ≤ s2 let f̄(s) for the value of f in the unique point of
L ∩K(s). By the Lipschitz condition, we have e−εM f̄(s) ≤ f(x) ≤ eεM f̄(s) for
any x ∈ K(s).

Since the partition C = S1 ∪ S2 ∪ B is fully straight, there are numbers u1

and u2 such that S1 =
⋃

s≤u1
C(s) and S2 =

⋃
s≥u2

C(s). Let v(s) = vol C(s).
By the mean value theorem,∫ u2

u1

f̄(s)v(s) = (u2 − u1)f̄(ζ)v(ζ)

for some u1 ≤ ζ ≤ u2. Without loss of generality ζ = 0. Since u2 − u1 ≥ t, this
implies that

µ(B) ≥ e−Mεf̄(0)v(0).

By Brunn–Minkowski inequality v(s)1/(d−1) is concave, and hence so is log v(s).
Since ln f is log-concave, it follows that G(s) def= ln f(s) + ln v(s) is concave. By
scaling orthogonal to v we may assume that G(0) = 0. Since G is concave, there
is a γ ∈ R such that G(s) ≤ γs for all s.

If γ = 0, then µ(S1) ≤ eMεs1 and µ(S2) ≤ eMεs2. Hence

min
(
µ(S1), µ(S2)

)
≤ 1

2

(
µ(S1) + µ(S2)

)
≤ 1

2eMεD ≤ 1
2e2Mε D

T
.

Suppose γ 6= 0. We may assume that γ > 0 by reflection of C if necessary.
We can also assume that γ = 1 by scaling in v direction. Thus, G(s) ≤ s, giving

µ(S1) ≤ eMε

∫ 0

−s1

es ds = eMε(1− e−s1),

µ(S2) ≤ eMε

∫ s2

0

es dx = eMε(es2 − 1).

Let µ̃ = e−Mε min
(
µ(S1), µ(S2)

)
. We have s1 ≥ − ln(1− µ̃) and s2 ≥ ln(1 + µ̃).

Thus,
1
2D ≥ 1

2 (s2 + s1) ≥ 1
2

(
ln(1 + µ̃) + ln(1− µ̃)

)
> µ̃,

where we used the Taylor expansion of ln(1+x) to deduce the last inequality.
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Computing volumes: the end

Recall that we may assume that convex body C is sandwiched between B(0, 1)
and B(0, 8d

√
d). For x 6= 0 let

r′(x) = inf{t > 0 : x ∈ tC} and r(x) = max(0, r′(x)− 1).

The function r(x) is convex because if x ∈ r(x)C and y ∈ r(y)C, then λx +
(1 − λ)y ∈ λr(x)C + (1 − λ)r(y)C. The function r(x) is convex because it is
a maximum of two convex functions. The smoothening of C that we will work
with is the function

f(x) = exp
(
−2d r(x)

)
.

The function f(x) is log-concave. Its integral is comparable to the volume of C.
The inequality

∫
f ≥ volC is clear. In the other direction, by slicing Rd into

level sets of r(x) we obtain∫
f − volC ≤

∫ ∞

0

[
vol

(
(1 + r + dr)K

)
− vol

(
(1 + r)K

)]
e−2dr

= d vol(C)
∫ ∞

0

(1 + r)d−1e−2dr dr

≤ d vol(C)
∫ ∞

0

er(d−1)e−2dr dr

= vol(C)/e.

The function r′ is 1-Lipschitz because r′(x) ≤ r′(y)+|x−y| because B(0, 1) ⊂
C. Thus r(x) is also 1-Lipschitz, and so log f(x) is 2d-Lipschitz. We shall per-
form the Metropolis random walk (2) on δ{−N, . . . , N}d with N = 800δ−1d

√
d log d.

We shall choose δ = 1/d2. We start the walk from the origin.

Lemma 19. If f(x) is log-concave, and log f(x) has Lipschitz constant α, then
the conductance of the Metropolis random walk (2) on δ{−N, . . . , N}d is at most
8d3/2 exp(3αδ

√
d)N .

Proof. By scaling f as necessary, we may assume that f is the stationary dis-
tribution of the Markov chain. Note that scaling does not change the Lipschitz
constant of log f .

Write Ω = δ{−N, . . . , N}d for the state space of the random walk. Let Qδ

denote the cube of side length δ centered at the origin. For every set X ⊂ Ω the
notation X̄ denotes the se X + Qδ. Note that the capacity CX =

∑
x∈X f(x)

satisfies
e−αδ

√
dµ(X̄) ≤ CX ≤ eαδ

√
dµ(X̄).

Suppose S is any subset of Ω of capacity CS ≤ 1/2. The flow from S to
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Ω \ S is

FS =
∑
x∈S
y 6∈S

f(x)P (x, y) =
∑
x∈S
y 6∈S
x∼y

1
4d

min(f(x), f(y))

≥ 1
4de−αδ

√
d

∑
x∈S
y 6∈S
x∼y

f(y).

Introduce the sets

B = {x ∈ S : ∃y ∈ Ω \ S s.t. x ∼ y}.

Then
FS ≥ 1

4de−αδ
√

dCB .

Let S′ = Ω \ (B ∪ S). Since CS ≤ 1/2

min
(
µ(S̄), µ(S̄′)

)
≥ e−αδ

√
d min(CS , CS′) = e−αδ

√
d min(CS , 1− CS − CB)

≥ e−αδ
√

d(CS − CB).

By the isoperimetric theorem 10 applied to δ[−N,N ]d with T = δ and D =
δ
√

dN we have

e−αδ
√

d(CS − CB) ≤ min
(
µ(S̄), µ(S̄′)

)
≤ 1

2Nµ(B̄) ≤ 1
2

√
dNeαδ

√
dCB .

Therefore,

CS ≤
(
1+ 1

2

√
dNe2αδ

√
d
)
CB ≤ 4de2αδ

√
d
(
1+ 1

2

√
dNe2αδ

√
d
)
FS ≤ 8d3/2 exp(3αδ

√
d)NFs.

With the choice of α, δ,N we made obtain that the conductance of the
random walk is

Φ ≥ 1/8d3/2 exp(3αδ
√

d)N = Ω(d−11/2 log−1 d)

By Jerrum–Sinclair bound on the mixing of the random walk it follows that

∆′(x)2π(x) ≤ d2(t) ≤ d2(0)(1− Φ2)t.

It remains to estimate d2(0). We will be wasteful. We have

d2(0) =
∑

x

∆0(x)2/π(x) =
∑

x

(
P[Xt = x]− π(x)

)2
/π(x)

≤
∑

x

(
P[X0 = x]2 + π(x)2

)
/π(x)

= 1 +
∑

x

P[X0 = x]2/π(x) = 1 + 1/π(0)
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Since log f is 2d-Lipschitz and δ = 1/d
√

d, it follows that e−2 ≤ f(x)/f(y) ≤ e2

for y ∈ x + Qδ. Thus for every x ∈ C we have

π(x) =
f(x)∑
y f(y)

≥ f(0)
e2δ−d

∫
f

= d−O(d)

Thus we choose the number of steps to be t = log
(
1/επ(0)2Φ2

)
= O(d13 log4 d),

then ∆′(x)2 ≤ ε.
We have thus constructed a polynomial-time sampler from C ∩ δZd with

δ = 1/d
√

d. From it we can easily obtain a sampler from C as follows. Pick a
random point x ∈ C ∩ δZd, and than y ∈ x+Qδ. With probability f(y)/e2f(x)
output y, otherwise restart the random walk from scratch.
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