
Computational geometry: notes 1∗

Topics covered in this course

In this course we shall mainly cover two topics in computational geometry. The
first is computation volumes of convex bodies, and the second is the geometric
range searching.

Do not do it in the 4-space!

Given a convex body1 C in Rd, the task is to find its
volume. If d is small, then the conventional method of subdi-
viding the space into tiny boxes and counting the number of
boxes that are contained in C might be acceptably fast. If n
is large, then the number of boxes is exponential in d, and the
method is utterly impractical.

We shall see a method to approximate the volume of C
which takes only polynomially many steps. The basic idea is
simple: place a ball B inside C, and pick points at random
from C. Then the proportion of points that falls into B gives
a good estimate on the volume of C. To make this work we
shall need ellipsoidal method, isoperimetric inequalities, and
some results on mixing of random walks.

Secondly, we shall study the geometric range searching. A typical problem is
this: Suppose we have a collection P of points in the plane, we wish to be able
to find all the points in P that fall within a given disk D. If we need to solve
this problem just once, then we are forced to perform Ω(|P |) obvious checks.
However, if the set P is fixed, and we need to solve the problem many times for
different D, there is room for cleverness.

About computational model

We focus on the underlying mathematics rather than on the practical side of
computing. Thus instead of merely sweeping the details about real-world com-
puters under the rug, we will throw them outside.

We shall assume that we compute with genuine real numbers, and not with
approximations that can be represented on a computer. In practice the danger

∗These notes are from http://www.borisbukh.org/CompGeomEaster11/notes1.pdf.
1Convex body is a closed and bounded convex set.

1

http://www.borisbukh.org/CompGeomEaster11/notes1.pdf

of round-off errors is not only in their potential to accumulate, but also in the
loss many mathematical properties. For example, in machine arithmetic the
associative law x + (y + z) = (x + y) + z need not hold. Dealing with these
problems is an art in itself.

We shall ignore the multiplicative constants in the estimating the cost of
the computation. For example, both an algorithm that takes n2 steps, and
the algorithm that takes 100n2 steps for us will be simply an Θ(n2) algorithm.
An algorithm that takes Θ(n log n) steps will be considered superior to one
that takes Θ(n2). This is correct for most simple algorithms, and is wrong
for complicated algorithms because the latter usually come with large implicit
constants.

Finally, we shall usually make non-degeneracy assumptions on the input to
the algorithm. These are made to simplify the exposition, and will always be
explicitly stated.

Basic definitions and standard facts

A convex combination of two points p, q ∈ Rd is any point of the form λp+(1−λ)q
where 0 ≤ λ ≤ 1, i.e. any point on the line segment pq. A set C ⊂ Rd is a
convex set if for every p, q ∈ C it contains the segment pq. The definition The
convex hull of a set P ⊂ Rd is the smallest convex set containing P ,

conv(P) =
⋂

convex C
P⊂C

C.

Computing volumes: oracles

There are different ways a convex body C might be presented to us. For example,
the C might be given as the intersection of halfspaces, or ellipsoids. It could
stored in computer’s memory, or parts of it could be computed as needed. We are
not interested in these details, and so assume that we have an efficient method
to determine whether a given point is in the body. We personify the method,
and call it an oracle. An oracle is simply an entity that answers questions of
a particular form. For example, the strong membership oracle answers “Is the
point in C?”. The type of oracle we will use most is the strong separation
oracle which answers “Is the point in C? If no, what is the hyperplane
separating it from C?”.

If when presented to every point we choose, the oracle responds “no”, it does
not mean that C is empty, but simply that C might be elsewhere. To avoid this
we shall assume that we know of a ball Bin contained in C. Similarly, to avoid
the situation where oracle responds “yes” all the time, we shall assume that we
know of a ball Bout containing C.

We shall assume that our algorithms can access the convex body only via
an oracle, and not in any direct way.

2

Computing volumes: deterministic algorithms

Most familiar computational paradigm is the deterministic algorithm. Such an
algorithm performs a sequence of steps that depends only on the input presented
to it. Alas, no deterministic algorithm can quickly approximate the volume of
a convex body quickly. The reason is that if P0 and P1 are the sets of points to
which the oracle replied “yes” and “no”, then the only conclusion one can draw
is that vol conv(P0) ≤ volC < vol conv(P1), where conv(P) denotes the convex
hull of P .

Theorem 1 (Elekes). If P ⊂ Rd is an n-point set contained in the unit ball
B(0, 1) ∈ Rd, then

vol conv(P)
volB(0, 1)

≤ n/2d.

For a point p ∈ Rd let Bp
def= B(p/2, |p|/2) denote the smallest ball containing

both p and the origin. The theorem 1 is a consequence of the following geometric
lemma.

Lemma 2. Suppose p, q ∈ Rd are arbitrary points, and r = λp + (1 − λ)q is
their convex combination. Then Br ⊂ Bp ∪Bq.

In particular, if P is any set in Rd, then

conv P ⊂
⋃
p∈P

Bp.

Proof. A point x is contained in Bp precisely when 〈x−p/2, x−p/2〉 ≤ 〈p/2, p/2〉.
After expanding we obtain

x ∈ Bp ⇐⇒ 〈x, x〉 ≤ 〈p, x〉.

Similarly,

y ∈ Bq ⇐⇒ 〈y, y〉 ≤ 〈q, y〉,
y ∈ Br ⇐⇒ 〈y, y〉 ≤ 〈r, y〉

⇐⇒ 〈y, y〉 ≤ λ〈p, y〉+ (1− λ)〈q, y〉.

The inclusion Br ⊂ Bp ∪Bq is then clear.
Since every element of conv(P) is can be obtained from points of P by

repeatedly taking convex combinations, the lemma follows.

Proof of theorem 1. From the preceding lemma we have conv(P) ⊂
⋃

p∈P Bp,
and thus

vol conv(P) ≤
∑

volBp = volB(0, 1)
∑
|p|d ≤ 2−dB(0, 1).

3

Theorem 3. There is no deterministic algorithm that makes fewer than 2d−2

queries to a strong separation oracle, and outputs a number V such that 1
2V ≤

volC ≤ 2V .

Proof. If the oracle answers consistently with C = B(0, 1), then after ask-
ing 2d−2 questions, the volC can be any number between 1

4 volB(0, 1) and
volB(0, 1).

Computing volumes: basic probabilistic algorithm

The oracles from theorem 1 are like their namesakes from antiquity. Their
answers contain little information, and are consistent with many interpretations.
However, the computational oracles are not deceptive, and truthfully answer
queries about a single convex body C. We shall exploit that.

The probabilistic algorithm is allowed to decide what to do next based on a
result of a random experiment, such as a coin toss. The simplest probabilistic
algorithm to compute vol C is this:

Algorithm 1 Darts algorithm
1: procedure Darts(Bin, Bout, δ) . Computes volC with relative error δ
2: N ← 10/δ2

3: Throws← 0
4: Hits← 0
5: while Hits < N do
6: p← a random point from Bout

7: Throws← Throws + 1
8: if p ∈ C then . Use oracle for this
9: Hits← Hits + 1

10: end if
11: end while
12: return (Hits/Throws) volBout

13: end procedure

The algorithm simply throws imaginary darts into “dartboard” B(0, 1) until
it hits the “target” C exactly N times. The algorithm uses the proportion of
hits to estimate the volume of C. We say that the relative error of the algorithm
is at most δ if it output a number V such that (1 − δ)V ≤ volC ≤ (1 + δ)V .
Since we want to make the error small, and to avoid unnecessary calculations
we shall always assume that δ is at most 1/2.

Theorem 4. The probability that the algorithm makes more than 10N volBout/ volC
oracle calls is at most 1/10. The algorithm errs with relative error more than δ
with probability at most 1/10.

Proof. Let Xi be the number of throws the algorithm makes after i’th hit before
obtaining i + 1’st hit (we count the throw scoring i + 1’st hit). The variables

4

X1, . . . , XN are independent, and each of them is distributed according to ge-
ometric distribution with success probability p = volC/ volBout. Furthermore,
Throws = X1 + · · ·+ XN . Thus, the expectation and variance of Throws are

E[Throws] = N/p,

V[Throws] = N(1− p)/p2.

By Markov inequality the probability that the algorithm makes more than
10N/p oracle queries is at most E[Throws]/(10N/p) = 1/10. Since p ≥ volBin/ volBout,
the first claim is true.

The probability that the relative error is at most δ is

P
[∣∣∣∣ Hits

Throws
volBout − volC

∣∣∣∣ < δ volC
]

= P
[∣∣∣∣ N

p Throws
− 1
∣∣∣∣ < δ

]
= P[

δ

1 + δ
< 1− Throws

N/p
<

δ

1− δ
]

≥ P[|N/p− Throws| < δN/p]

which by Chebyshev’s inequality is

≥ 1− N(1− p)/p2

(δN/p)2

= 1− 1− p

δ2N
≥ 9/10.

The error probability of 1/10 in the algorithm can clearly be reduced by
tweaking the algorithm, and its analysis. Whereas it is easy to do it for this
simple algorithm, we will not want to do later, as that introduces extra calcu-
lations in the algorithm analysis. The conceptually simpler way is to abort the
algorithm whenever it takes more than 10N volBout/ volBin oracle calls. Then
we can run this modified algorithm Ω(log(1/ε)) times, and output the median of
all the results computed. One can show that with probability 1− ε the median
approximates volC with relative error at most δ.

Computing volumes: ellipsoid method

The running time of Darts algorithm is proportional to the ratio volBout/ volC.
The ratio might actually be arbitrarily large, for unlucky choice of Bout. The
ellipsoid algorithm is way to improve on a choice of Bout. It uses the strong
separation oracle. An ellipsoid is an image of a ball under an affine map.

5

Algorithm 2 Ellipsoid algorithm
1: procedure EllipsoidMethod(Bin, Bout) . Finds a pair of similarly sized

ellipsoids B′
in, B′

out such that B′
in ⊂ C ⊂ B′

out

2: B′
in ← Bin

3: B′
out ← Bout

4: while B′
out is bigger than B′

in do
5: Make an affine change of coordinates so that B′

out = B(0, 1)
6: p0, . . . , pd ← vertices of a regular simplex with |pi| = 1/8d
7: if pi ∈ C for all i = 0, 1, . . . , d then
8: B′

in ← B(0, 1/8d2)
9: return (B′

in, B′
out)

10: end if
11: H ← the halfspace containing C, but not pi 6∈ C
12: B′

out ← the smallest ellipsoid containing B′
out ∩H.

13: end while
14: end procedure

pC

Shrinking B′
out

To keep the algorithm readable we assume that the algorithm keeps
track of matrix describing the affine change of coordinates, so that in
the current coordinates we always have B′

out = B(0, 1). At the each
iteration, the algorithm replaces the ellipsoid B′

out by a smaller ellipsoid
which still contains C. It does so by checking for several points pi lying
very close to the center of B′

out whether they lie in C or not. If one of
them is not in C, then there is a hyperplane separating it from C, and
we use that hyperplane to cut B′

out to obtain a truncated ellipsoid as in
the picture on the right. The truncated ellipsoid can then be enclosed
in an ellipsoid of smaller volume than B′

out. If all pi are in C, then
their convex hull contains a fairly large ellipsoid. The last statement is
elementary, and is the content of the next lemma.

Lemma 5. If σ ⊂ Rd is the regular simplex centered at the origin, all of whose
vertices are on the unit sphere, then B(0, 1/d) ⊂ σ.

Proof. Let p be any vertex of σ, and let τ be the face opposite to p. The line
0p is normal to τ , and meet τ in its barycenter B(τ). Thus 0p is a height of the
simplex σ with base τ . It is also the height of the simplex conv(τ ∪ {0}) with
the same base. We thus obtain

volS
vol conv(τ ∪ {0})

=
1 + |B(τ)|
|B(τ)|

.

Since S is union of d + 1 simplices, each of which is congruent to conv(τ ∪ {0}),
the left side is equal to d + 1. Solving the equation we obtain |B(τ)| = 1/d.

Since the algorithm terminates only if it reaches line 9, the proceeding lemma
guarantees that output of the algorithm is always correct, i.e. B′

in ⊂ C ⊂ B′
out,

and the ratio vol B′
out/ volB′

in is 1/(8d2)d. However, does the algorithm ever

6

terminate? It does and it does it fast since the volumes of B′
out decrease rapidly

at each iteration.

Lemma 6. Suppose H ⊂ Rd is a halfspace such that the distance from the
origin to ∂H is at most 1/8d. Then B(0, 1) ∩H is contained in an ellipsoid of
volume at most (1− 1/40d) volB(0, 1).

Proof. Without loss of generality H is of the form H = {xd ≤ 1/8d}. For sake
of brevity denote the projection of a vector x = (x1, . . . , xd−1, xd) onto the first
d− 1 coordinates by x′

def= (x1, . . . , xd−1). Then the ellipsoid

E = {x : a(xd + ∆)2 + b|x′|2 ≤ 1},

where

a = 1 +
1
8d

b = 1− 1
16d2

∆ =
1
8d

.

contains H ∩B(0, 1). Indeed, if x ∈ B(0, 1) ∩H then

a(xd + ∆)2 + b|x′|2 = (a− b)x2
d + 2a∆xd + a∆2 + b(x2

d + |x′|2)
≤ (a− b)x2

d + 2a∆xd + a∆2 + b

≤

{
(b− a + 2a∆)xd + b + a∆2 if xd ∈ [−1, 0]
(a− b)/(8d)2 + b + 2a∆/8d + a∆2 if xd ∈ [0, 1/8d]

≤

{
a− 2a∆ + a∆2 if xd ∈ [−1, 0]
b + 1/128d2 + a∆/4d + a∆2 if xd ∈ [0, 1/8d]

and substituting values of a, b, ∆ we obtain

≤

{
1 + 1

8d −
2a
8d + 2

8d if xd ∈ [−1, 0]
1− 1

16d2 + 1
128d2 + 1+1/8

8d·4d + 1+1/8
64d2 if xd ∈ [0, 1/8d]

< 1.

The volume of the ellipsoid is

volE =
volB(0, 1)√

abd−1
=

volB(0, 1)√
(1 + 1/8d)(1− 1/16d2)d−1

≤ volB(0, 1)√
(1 + 1/8d)(1− 1/16d)

≤ volB(0, 1)(1− 1/20d)

since (1 + 1/8d)(1− 1/16d)(1− 1/40d)2 ≥ 1 for all d ≥ 1.

Therefore, each Ω(d) iterations of the algorithm, we halve the volume of
B′

out. Since in realistic computers a number of order 2n needs at least n bits
to encode, the number of iterations is bounded by a polynomial O(dn) which

7

polynomial in d and size of the input. To make the algorithm realistic, we would
need to mitigate the effects of rounding, and estimate the amount of memory
to keep track of the current system of coordinates. We refer to the book by
Grötschel, Lovász, Schrijver for the these (messy) details.

We note that on the line 12 the algorithm EllipsoidMethod uses the
smallest ellipsoid rather than the ellipsoid E featured in the proof of the lemma
above. Clearly, the smallest ellipsoid has smaller volume than E. It is not
immediately clear whether the smallest ellipsoid can be computed quickly. It
can be, and it is not overly laborious exercise to find its equation. The reader
who wants to avoid it can substitute E on line 12.

Computing volumes: multistage probabilistic al-
gorithm

By an application of ellipsoid method, and changing coordinate system, we
can assume that the convex body is sandwiched between two balls B(0, 1) and
B(0, 8d2). The factor 8d2 between ball radii is called sandwiching ratio. With
Darts algorithm this gives an algorithm of running time of exp(Θ(d2)) to com-
puter volC. That is too slow, but ellipsoid method is not to be blamed because
even if C is a simplex, then the sandwiching ratio is d, and if C is a cube, it is√

d even for the best sandwiching.
The way over this obstacle is to have a nested sequence of “targets” on

which we will use Darts algorithm. Suppose we have a sequence of convex
bodies B(0, 1) = C0 ⊂ C1 ⊂ · · · ⊂ Cn = C, where n = dO(1) and we are able to
pick a point uniformly at random from any Ci. Then we use Darts to compute
each of the ratios

volC0

volC1
,
volC1

volC2
, . . . ,

volCn−1

volCn

with relative error at most δ/2n and error probability at most 1/10n. Then
with error probability at most n · 1/10n = 1/10 we obtain an approximation of

volB(0, 1)
volC

=
volC0

volC1
· · · · · volCn−1

volCn

with relative error at most (1 + δ/2n)n ≤ exp(δ/2) ≤ 1 + δ. If the ratios
volCi+1/ volCi are all small, then the obtained algorithm will be fast.

It is easy to choose the sequence C0 ⊂ · · · ⊂ Cn satisfying these conditions.
We can set Ci = B(0, 2i/d)∩C. Then Ci’s are convex and volCi+1/ volCi ≤ 2.
The difficult part is to generate a random point inside Ci. If we have an oracle
for C, then we can make an oracle for Ci by adding a “secretary” to our oracle,
which checks whether the point is in B(0, 2i/d) before passing the question to
the oracle.

The surprising fact is that it is possible to efficiently sample a random point
from an arbitrary convex body using only a membership oracle. The idea is to
place a sufficiently fine grid inside C, and perform a random walk on the grid.
We start with a known point inside C, and at each step the we move to one of

8

Troublesome
body

the adjacent grid points. Of course, if the step we are about to take will
take us outside C, we will not take it. Since it is intuitively clear that
the convex body does not have any “bottlenecks”, the random walk is
not confined to any small part of C, and after a while we should find
at a random point of C. The basic problem with this approach is that
it behaves poorly near the boundary of C. At the extreme, the set of
grid points inside C might fail to form a connected graph under the
adjacency relation.

There are several ways to alleviate the boundary problems, and all
of them involve smoothing C to remove the sharp corners. In the smoothing
we will use, we replace C by a non-negative function f which is equal to 1
on C, and decays rapidly away from C. The function f will be a log-concave
function (definition will be given below), and the integral of f will be at most
twice larger than volC. We will then sample from the probability distribution
with density proportional to f , and reject the sample if the point falls outside
C. Since volC/

∫
f ≥ 1/2, it will take us on average two samples to generate a

uniformly distributed point in C.

Computing volumes: rapid mixing of Markov chains

We are about to employ a random walk to sample points from some log-concave
probability distribution π. We will need to show after a while the position of
the random walk will be distributed according to π, and that it will not take
long. In other words, we wish to show that the random walk mixes fast. In this
section we develop the probabilistic tool for the task.

A Markov chain on the state space Ω with initial is a sequence of random
variables X0, X1, . . . taking values in Ω such that

P[Xt+1 = y|Xt = x,Xt−1, . . . , X0] = P (x, y).

One thinks of t as discrete time, with Markov chain starting in a state X0, and
at step making a transition to the next state according to a probability law that
depends only on the current state. The simplest example is a random walk on
a graph G: the state space is the vertex set V (G), and at each step the chain
picks uniformly at random an edge emanating from v ∈ V , and moves to the
other endpoint of the edge.

A stationary distribution of a Markov chain is a function π : Ω→ [0, 1], which
is a probability distribution (i.e. non-negative, and

∑
x π(x) = 1), such that

π(y) =
∑
x∈Ω

π(x)P (x, y) for all y ∈ Ω.

In other words, a stationary distribution is the probability distribution such that
if Xi is distributed according to π, then so are Xi+1, Xi+2, For example,
if G is a d-regular graph, then the uniform distribution π(x) = 1/|V (G)| is a
stationary distribution.

9

We will concern ourselves exclusively with reversible Markov chains. These
are the chains for which there is a probability distribution π : Ω → [0, 1] such
that

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω. (1)

Such a π is a stationary distribution because
∑

x π(x)P (x, y) =
∑

x π(y)P (y, x) =
π(y)

∑
x P (y, x) = π(y). The condition is called reversibility because (1) says

that when reversible Markov chain is in a stationary distribution, the transition
from x to y is as likely as the transition from y to x. The other way to write
reversibility is

P̂ (x, y) = P̂ (y, x),

where P̂ (x, y) = P (x, y)/π(y).
The canonical example of a reversible Markov is a random walk on a graph

G. In that case π(v) = 1/ deg v is a stationary distribution satisfying (1). The
case of a general reversible Markov chain is only little more general than this
special case. It corresponds to a random walk on a weighted graph, in which
the edge uv gets the weight π(u)P (u, v), and at each step the edge is selected
with a probability proportional to its weight. The reader, who when reading
the foregoing exposition, thinks of the special case of a random walk on an
unweighted graph will lose no essential idea.

Under very mild condition on a Markov chain, the stationary distribution is
unique. The two conditions are irreducibility (one can reach from each state to
every other), and aperiodicity (the number of steps to go from a state to itself
is not always a multiple of the same integer). We will not show the uniqueness
here. For our case it will be a part of a stronger conclusion that follows from
the stronger assumptions available at our disposal. One of these assumptions
will be that the Markov chain is lazy, that is to say it satisfies P (x, x) = 1/2 for
all x ∈ Ω. A lazy chain is clearly aperiodic. The irreducibility will follow from
a bound on conductance which will now define.

For a Markov chain on a finite state space Ω the capacity of S ⊂ Ω is∑
x∈S

π(x),

i.e. the probability that a Markov chain in a stationary state is in S, the flow
out of S ⊂ Ω is

FS
def=
∑
x∈S
y 6∈S

π(x)P (x, y),

which is the probability that a Markov chain in a stationary state leaves S. The
conductance of a non-empty set S ⊂ Ω is the ratio ΦS

def= FS/CS . It is the
conditional probability of leaving S starting from S. Finally, the conductance
of the Markov chain is

Φ def= min
S⊂Ω

CS≤1/2

ΦS .

The conductance is small if there is a “bottleneck”, i.e. a set S of states that
is hard to escape. If the Markov chain starts distributed according to π, then

10

it takes time 1/ΦS just to escape S. Thus we cannot expect the random walk
to mix fast if Φ is small. The following result shows that the converse is true as
well.

We hope that P[Xt = x] approaches π(x) as t→∞. Let

∆t(x) = P[Xt = x]− π(x),

be the deviation between our hope and the reality at time t. We shall mostly
work with its relative version

∆′
t(x) = ∆t(x)/π(x).

Define
d2(t) =

∑
x∈Ω

∆t(x)2/π(x) =
∑
x∈Ω

π(x)∆′
t(x)2.

This is often called the chi-squared distance to the stationary distribution. The
following theorem shows that if Φ is large, these distances decay quickly.

Theorem 7 (Jerrum–Sinclair). A lazy reversible Markov chain on a finite state
space satisfies

d2(t + 1) ≤ (1− Φ2)d2(t).

In particular, d2(t) ≤ d2(0)(1− Φ2)t.

The proof will be based on two lemmas.

Lemma 8. For every reversible lazy Markov chain

d2(t + 1) ≤ d2(t)− 1
2

∑
x∈Ω

∑
y∈Ω

(
∆′

t(y)−∆′
t(x)

)2
π(x)P (x, y)

Proof. Define

P ′(x, y) =

{
P (x, y) if x 6= y,

P (x, x)− 1/2 if x = y.

Note that

d2(t) =
∑
x∈Ω

∆′
t+1(x)2π(x) =

∑
x∈Ω

∑
y∈Ω

π(x)∆′
t(x)2P (x, y) as

∑
y

P (x, y) = 1

=
∑
x∈Ω

∑
y∈Ω

π(y)∆′
t(x)2P (y, x) reversibility

=
∑
x∈Ω

∑
y∈Ω

π(y)(∆′
t(x)2 + ∆′

t(y)2)P ′(y, x) laziness

=
∑
x∈Ω

π(x)
∑
y∈Ω

(
∆′

t(x)2 + ∆′
t(y)2

)
P ′(x, y) renaming.

11

To relate this quantity to d2(t + 1) we first note that

∆t+1(x) = P[Xt+1 = x]− π(x) =
∑
y∈Ω

(
P[Xt = y]− π(y)

)
P (y, x)

=
∑
y∈Ω

∆t(y)P (y, x)

=
∑
y∈Ω

∆′
t(y)π(x)P (x, y)

=
∑
y∈Ω

(
∆′

t(y) + ∆′
t(x)

)
π(x)P ′(x, y) laziness

This allows us to massage the expression for d2(t + 1) into a suitable form by
means of a Cauchy–Schwarz inequality

d2(t + 1) =
∑
x∈Ω

∆t+1(x)2/π(x) =
∑
x∈Ω

π(x)

∑
y∈Ω

(
∆′

t(y) + ∆′
t(x)

)
P ′(x, y)

2

≤
∑
x∈Ω

π(x)

∑
y∈Ω

(
∆′

t(y) + ∆′
t(x)

)2
P ′(x, y)


∑

y∈Ω
y 6=x

P ′(x, y)

 Cauchy–Schwarz

= 1
2

∑
x∈Ω

π(x)

∑
y∈Ω

2
(
∆′

t(y)2 + ∆′
t(x)2

)
−
(
∆′

t(y)−∆′
t(x)

)2
P ′(x, y)

 laziness

= d2(t)− 1
2

∑
x∈Ω

π(x)
∑
y∈Ω

(
∆′

t(y)−∆′
t(x)

)2
P ′(x, y)

= d2(t)− 1
2

∑
x∈Ω

π(x)
∑
y∈Ω

(
∆′

t(y)−∆′
t(x)

)2
P (x, y).

Recall the notation [d] def= {1, 2, . . . , d}.
Lemma 9. Suppose Ω = [n] and f : Ω→ R satisfies f(1) ≥ f(2) ≥ · · · ≥ f(d).
Assume furthermore that there is w ∈ Ω such that f(w+1) = 0 and the capacity
of [w] is C[w] ≤ 1/2, then∑

x<y

π(x)P (x, y)
(
f(x)− f(y)

)2 ≥ Φ2
∑
x≤w

f(x)2π(x)

Proof. Consider∑
x<y

π(x)P (x, y)
(
f(x)2 − f(y)2

)
=
∑
x<y

π(x)P (x, y)
∑

x≤z<y

(
f(z)2 − f(z + 1)2

)
=
∑

z

(
f(z)2 − f(z + 1)2

) ∑
x∈Sz

π(x)P (x, y)

=
∑

z

(
f(z)2 − f(z + 1)2

)
F[z]

12

which since CSz ≤ CS ≤ 1/2 for z ≤ w and f(z) ≥ f(z + 1) can be bounded by

≥ Φ
∑
z≤w

(
f(z)2 − f(z + 1)2

)
C[z]

= Φ
∑
z≤w

(
f(z)2 − f(z + 1)2

)∑
x≤z

π(x)

= Φ
∑
x≤w

π(x)
∑

x≤z≤w

(
f(z)2 − f(z + 1)2

)
= Φ

∑
x≤w

π(x)
(
f(x)2 − f(w + 1)2

)
= Φ

∑
x≤w

π(x)f(x)2

Therefore, we need to find a suitable upper bound on
∑

x<y π(x)P (x, y)(f(x)2−
f(y)2). It is done by a clever use of the Cauchy–Schwarz inequality(∑

x<y

π(x)P (x, y)
(
f(x)2 − f(y)2

))2

=

(∑
x<y

π(x)P (x, y)
(
f(x)− f(y)

)(
f(x) + f(y)

))2

≤
∑
x<y

π(x)P (x, y)
(
f(x)− f(y)

)2
×
∑
x<y

π(x)P (x, y)
(
f(x) + f(y)

)2
The first term of the product is exactly what we are after. The second term can
be estimated by∑
x<y

π(x)P (x, y)(f(x) + f(y))2 ≤ 2
∑
x<y

π(x)P (x, y)(f(x)2 + f(y)2)

= 2
∑

x

f(x)2

 ∑
x<y≤w

π(x)P (x, y) +
∑
y<x

π(y)P (y, x)


= 2

∑
x

f(x)2
∑
y 6=x
y≤w

π(x)P (x, y) reversibility

≤
∑

x

π(x)f(x)2 laziness

Putting everything together we obtainΦ
∑
x≤w

π(x)f(x)2

2

≤

∑
x≤w

π(x)f(x)2

(∑
x<y

π(x)P (x, y)
(
f(x)− f(y)

)2)
from which it follows that∑

x<y

π(x)P (x, y)
(
f(x)− f(y)

)2 ≥ Φ2
∑
x≤w

f(x)2π(x).

13

Finally we can give a proof of Theorem 7.

Proof. Order Ω so that ∆′(1) ≥ · · · ≥ ∆′(n). Let w be the largest integer such
that C[w] ≤ 1/2. Set

f1(x) = max(∆′(x)−∆′(w + 1), 0)
f2(x) = max(∆′(w + 1)−∆′(x), 0).

The functions f1 and f2 are the positive and negative parts of ∆′(x)−∆′(w+1).
Clearly (∆′(x) − ∆′(y))2 ≥ (f1(x) − f1(y))2 + (f2(x) − f2(y))2. Applying the
Lemma 9 to f1 and f2 in turn we obtain∑

x<y

π(x)P (x, y)
(
f1(x)− f1(y)

)2 ≥ Φ2
∑

x

f1(x)2π(x)

∑
x<y

π(x)P (x, y)
(
f2(x)− f2(y)

)2 ≥ Φ2
∑

x

f2(x)2π(x)

Adding these two formulas together we obtain∑
x<y

π(x)P (x, y)
(
∆′(x)−∆′(y)

)2 ≥ Φ2
∑
x≤w

(f1(x)2 + f2(x)2)π(x)

= Φ2
∑

x

(
∆′(x)−∆′(w + 1)

)2
π(x)

which, since
∑

x ∆′(x)π(x) =
∑

x ∆(x) = 0, is equal to

= Φ2
∑

x

(
∆′(x)2 + ∆′(w + 1)2

)
π(x)

≥ Φ2
∑

x

∆′(x)2.

Plugging this into Lemma 8 the theorem follows.

Problems

1. Let P be a partially ordered set on the ground set [n] = {1, 2, . . . , n}. Let
C be a convex polytope given by the inequalities

xi ≥ 0 for i = 1, . . . , n,

xi ≤ xj if i ≺P j.

Show that vol(P) is proportional to the number of linear extensions of P .
What is the proportionality constant?

2. (a) Suppose P0 ⊂ Rd is arbitrary. Define sets P1, P2, . . . inductively
by Pi+1 = {λp + (1 − λ)q : p, q ∈ Pi, 0 ≤ λ ≤ 1}. Show that
conv(P) =

⋃
i Pi.

14

(b) Show that conv(P) = Pd.

3. Given an oracle that generates random uniformly distributed real numbers
from the interval [0, 1], find a way to generate a uniformly distributed
point in B(0, 1) ⊂ Rd by asking only d oracle queries. (Generate some
other radially symmetric distribution.)

4. Show that algorithm Darts works even if the points generated at different
times at line 6 are not independent from one another, but only pairwise
independent.

5. Suppose C is a positive real number, and X is a random variable such
P[|X − Y | ≤ δY] < 1/10. Suppose X1, . . . , Xn are independent and are
distributed identically with the same distribution as X. Let Xm be the
median of X1, . . . , Xn. Show that P[|Xm − Y | ≤ δY] < 2−n.

6. Show that if C ⊂ Rd is convex, then vol
(
C∩B(0, r)

)
≤ rd vol(C∩B(0, 1)).

7. Modify the ellipsoid method as to reduce the ratio between the radii of
B′

in and B′
out from 8d2 to 8d

√
d. [Hint: use different points at distance

1/8d at the line 6 of EllipsoidMethod].

15

