
Exploring Combinatorics:

Inclusion{exclusion�

Like the textbook (section 3.7), we introduce inclusion{exclusion with a silly problem.

Problem 1. A group of students attends three kinds of classes: art classes, biology

classes, and chemistry classes1. It is known that in this group 11 take an art class, 8
take biology, and 4 take chemistry. Some students attend more than one class. Four

students take both art and biology, two take both art and chemistry, two take biology and

chemistry, and one person attends all three classes. How many students are there taking

at least one class?

A natural impulse is to add the number of students in each of class, i.e., estimate the
number of students by jAj+ jBj+ jCj, where A, B and C are the sets of the students in
the art, biology and chemistry classes respectively. Each person who takes just one class
is counted exactly once by this sum, but those who take several classes are counted more
than once (overcounted). The Venn diagram below illustrates the issue:
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Count multiplicity for jAj+ jBj+ jCj

The integers in the regions of the Venn diagram record the number of times jAj +
jBj + jCj counts students that belong to the region. For example, the 1 in the bottom
left signi�es that students taking only art are counted once, whereas 3 means that the
student taking all three classes is counted 3 times.

To correct the overcount it is natural to subtract the number of those students that
are counted twice. We thus obtain the expression jAj+jBj+jCj�jA\Bj�jA\Cj�jB\Cj
and the following Venn diagram:

�These notes are available from the course webpage, and directly from http://www.borisbukh.org/

CombinatoricsSpring13/notes_inclusion_exclusion.pdf
1Of course all the students take math classes.
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Hence, jAj + jBj + jCj � jA \ Bj � jA \ Cj � jB \ Cj undercounts the number of
students, and we need to correct for the student taking all the subjects. We thus arrive
to the following formula:

jA [B [ Cj = jAj+ jBj+ jCj � jA \Bj � jA \ Cj � jB \ Cj+ jA \B \ Cj

The process by which we arrived at the formula is called inclusion{exclusion, and the
resulting formula is generally known as the inclusion{exclusion principle (for three sets).
Plugging the values into the formula, we �nd that there are 11+8+4�4�2�2+1 = 18
students in all.

The inclusion{exclusion principle is not restricted to counting elements of sets. For
instance, if A, B and C are three regions in the plane, of (�nite) areas area(A), area(B),
area(C) respectively, then we can �nd the area of A [ B [ C in the similar manner:
overestimate by area(A)+area(B)+area(C), then underestimate by area(A)+area(B)+
area(C)� area(A [B)� area(A \ C)� area(B \ C), and �nally getting it right,

area(A [B [ C) = area(A) + area(B) + areaC � area(A \B)� area(A \ C)

� area(B \ C) + area(A \B \ C):
(1)

Remark. An astute reader will notice that similar formulas exist for length, volume
and some other quantities. For this and other similar reasons, a popular notation is
jAj for the area (or volume, or length, depending on the dimension) of A. Area, volume,
length and the number of elements are examples of measures, and the inclusion{exclusion
principle holds for all measures.

Area of a spherical triangle

As an application, we can derive a handy formula for the area of a spherical triangle.
Unlike a triangle in the plane, the angles of a triangle on the sphere do not add up to
180�. The angles of a spherical triangle in fact determine the triangle, much like the
ordinary triangle is determined by its sidelengths.

In the plane a triangle has three sides, which are line segments. A line segment is the
shortest path between its endpoints. On the sphere, the shortest paths between points
are arcs of great circles. Similarly, in the plane a triangle is an intersection of three
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halfplanes, which are sets bounded by a line. Since great circles bound halfspheres, this
motivates the following de�nition.

De�nition. A spherical triangle is an intersection of three halfspheres. We allow only

triangles of positive area.

Consider a sphere S and let A, B, C be three halfspheres whose intersection is non-
empty, and let T = A\B \C be the spherical triangle that they determine. We rewrite
(1) as

area(T ) = area(A[B[C)�area(A)�area(B)�area(C)+area(A\B)+area(A\C)+area(B\C):

We shall evaluate the terms on the right of the equation in order.
The term area(A [ B [ C): Since halfspheres are pretty big, and their union is

bigger still, it is more convenient to think of a smaller set S n (A [ B [ C) rather than
A [ B [ C. A point does not belong to halfsphere A if and only if the antipodal point2

belongs to A. Similarly, for halfspheres B and C. Thus, S n (A[B[C) consists of points
that are antipodal to A \B \ C. Hence, area(A [B [ C) = area(S)� area(T ).

The terms area(A), area(B), and area(C): These are all equal to 1
2 area(S) since

A, B and C are halfspheres.
The terms area(A[B), area(A[C) and area(B[C): Each of these terms measures

the area of a lune (also known as a 2-gon) formed by bounding great circles of respective
halfspheres.

�

A lune with angle �

A lune is determined by the angle at which the two halfspheres meet. We claim that
the area of a lune is proportional to its angle. More accurately, our claim is that if the
lune's angle is �, then its area is area(lune) = �

360� area(S). It is easiest to see this in the
case � divides 360�. If � = 1

q
360� for an integer a, then successively rotating the lune

by � degrees, we can cover the sphere by q rotated copies of the lune, which implies that
area(lune) = area(S)=q. Similarly, if � = p

q
360� for some rational number p

q
, then by

successively rotating the lune the angle 1
q
360� we will obtain a collection of q copies of the

original lune that cover each points of the sphere p times. Thus p area(S) = q area(lune).
The case of an irrational angle � follows by taking a limit3.

2If x 2 S, then the antipodal point to x is the other point of the sphere that lies on the ray from x
directed to the sphere's center. If the sphere is centered at the origin, the antipode of x is �x.

3Formally, this is cheating because we have neither de�ned surface area on a sphere, nor shown that
it behaves properly when we take the limits.
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Conclusion: Putting all of these together, we obtain that if angles in a spherical
triangle are �, �, and 
, then

area(T ) =
�
area(S)� area(T )

�
� 3 � 12 area(S) + area(S)

�+ � + 


360�

or equivalently,

area(T ) = 1
2 area(S)

�+ � + 
 � 180�

360�
:

If we express the angles in radians, and recall that the area of a sphere of radius r is
4�r2, then we obtain a very neat formula

area(T ) = r2(�+ � + 
 � �):

The quantity �+ � + 
 � � is known as spherical excess.

The inclusion{exclusion principle in general

In this section we generalize what we did for three sets to any number of sets. Suppose
A1; A2; : : : ; An are n �nite sets, we know the sizes of jAij; jAi \ Aj j; jAi \ Aj \ Akj, etc,
for all i; j; k; : : : 2 [n], and we wish to compute the size of A1 [A2 [ � � � [An. As above,
the natural �rst step is to estimate the size of the union by jA1j+ jA2j+ � � �+ jAnj. As
above, this is an overestimate. For example, all the elements of

S
iAi that belong to two

of the Ai's are counted twice. Thus, it is natural to estimate jAj byX
i

jAij �
X
i<j

jAi \Aj j: (2)

The new sum counts elements that occur only in one or two Ai correctly, but it under-
counts all the other elements. In particular, the elements that occur in three of the Ai's
are counted with total multiplicity 0 in (2), namely 3 times in

P
jAij, and �3 times inP

i;j jAi \Aj j. Thus, we considerX
i

jAij �
X
i<j

jAi \Aj j+
X
i<j<k

jAi \Aj \Akj:

Whereas the elements that occur in 1, 2 or 3 sets Ai are counted correctly by this sum,
all the others are not. By this point, the pattern should be obvious, and one is willing to
hazard a guess that jAj is equal to a certain sum of sums. The main di�culty now is not
so much to prove this conjecture, but to �nd a sane notation in which we can express it.
Our choice of notation goes a step beyond of what our textbook calls \devilish" (page
100).

For a non-empty set I � [n] we de�ne

AI
def

=
\
i2I

Ai:

For example, Af2;5;6g is a shorthand for A2 \A5 \A6.
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We can then write the inclusion{exclusion principle as������
[
i2[n]

Ai

������ =
X
I�[n]
I 6=;

(�1)jIj+1jAI j: (3)

We can easily convert our previous back-and-forth reasoning into a formal proof of
(3). Let x be an arbitrary element of A1 [ A2 [ � � � [ An. Suppose x belongs to some k
sets among A1; A2; : : : ; An. Without loss of generality, x belongs to all of A1; A2; : : : ; Ak,
but not to any of Ak+1; Ak+2; : : : ; An. The element x is counted precisely once by the
left side of (3). The contribution of x to the right side of (3) isX

I�[n]
I 6=;
x2AI

(�1)jIj+1 =
X
I�[k]
I 6=;

(�1)jIj+1 = 1 +
X
I�[k]

(�1)jIj+1:

Since there are as many sets of odd size as there are sets of the even size (�rst lecture;
also Proposition 3.1.3 in the textbook), it follows that

P
I�[k](�1)

jIj+1 = 0, and hence x
is counted exactly once by the right side (3). Since x is arbitrary, (3) is proven.

Probability that two numbers have no common factors

As an application of the general inclusion{exclusion principle we consider the following
mind-boggling question:

How likely are two random natural numbers to have a common factor?

As the question stands, it makes no sense. If we pick a random natural number so
that each natural number is equally likely, how likely are we to pick 7? Certainly the
probability of picking 7 is zero, for there are in�nitely many other numbers to pick from.
However, in that case the probability of picking any other number must be zero too, and
so the probability of picking anything at all must be zero! We have reached the state of
confusion that is frighteningly familiar to anybody who has ever done mathematics: we
are unsure of what words mean, and de�nitions seem elusive. To bring clarity we change
the question:

Let n be a large natural number, and consider the n2 pairs of numbers (a; b) where
a 2 [n] and b 2 [n]. How many of these pairs have no common factor?

This question is much better than the question that we started with. We replaced
the imprecise notion of a \random natural number" by a concrete \random number from
[n]". We have a question; let's �nd the answer!

We start by naming the set whose elements we want to count. We call it G, or in
symbols

G
def

=
�
(a; b) 2 [n]2 : there is no d such that d j a and d j b

	
:

We will apply the inclusion{exclusion principle to the complement of G. This step is
similar to the way one counts derangements (Section 3.8 of the textbook). So, we let

B
def

= [n]2 nB =
�
(a; b) 2 [n]2 : there is a d such that d j a and d j b

	
:
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(For the curious: the letters G and B stand for \good" and \bad". There are no shades
of gray in mathematics.)

For a prime number p we de�ne

Ap
def

=
�
(a; b) 2 [n] : p j a and p j b

	
: (4)

We then have B =
S
p�nAp where the union is over all the primes p that do not exceed

n. Therefore we are in the position to apply the inclusion{exclusion principle to compute
jBj. We let P be the set of all the primes not exceeding n. In our application of the
inclusion{exclusion principle the sets are indexed by the elements of P rather than by
the elements of [n], and so we obtain the formula

jBj =
X
P 0�P
P 0 6=;

(�1)jP
0j+1jAP j:

Computation of jAP j is scarier than it is hard. If we extend the de�nition (4) to allow
non-prime subscripts,

Ad
def

=
�
(a; b) 2 [n] : d j a and d j b

	
for any integer d;

and observe that a number is divisible by every prime in P if and only if it is divisible
by
Q

p2P p (fundamental theorem of arithmetic), then we arrive at a very simple relation

AP = AQ
p2P p:

Hence, our next task is to compute the size of Ad where d is some number. A pair
in Ad consists of two multiples of d not exceeding n. As there are

�
n
d

�
multiples of d not

exceeding n, it follows that jAdj =
�
n
d

�2
. Plugging this into the formula for jBj we obtain

jBj =
X
k�1

X
d is a product

of some k distinct
primes from P

(�1)k+1
jn
d

k2
: (5)

There are two simpli�cations that we can e�ect. First, we may restrict the summation
to d � n, for

�
n
d

�
vanishes for larger values of d. Second, we can introduce a notation

which will take care of tracking the pesky minus signs for us:

�(d)
def

=

(
(�1)k if d = p1p2 � � � pk is a product of k distinct primes;

0 if p2 j d for some prime p:

This de�nition of the function4 � is clever; by de�ning �(d) to be zero when d is not a
product of distinct primes, we can extend the summation to all values of d. Note that
�(1) = 1 since 1 is a product of zero distinct primes; this will come handy later. These
two simpli�cations together transform (5) into

jBj =
X

2�d�n

��(d)
jn
d

k2
:

4The function � is known as the M�obius function. Call it by that name when you meet it next time.
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The sum above looks pretty, save for the minus sign and the missing term d = 1.
Replacing jBj by jGj �xes these blemishes, and also shifts our attention from B (whose
role is auxiliary) to G (which is our primary interest):

jGj = n2 � jBj = n2 +
X

2�d�n

�(d)
jn
d

k2
=

X
1�d�n

�(d)
jn
d

k2
:

If we could factor out the n2 from the sum, we could consider ourselves done. Only
the 
oor signs stand in our way. We focus on them next. If x is any real number, then
x = bxc+ fxg where fxg is the fractional part of x, better known as the \stu� after the
decimal point", as in f217:446g = 0:446. We compute

bxc2 � x2 =
�
x� fxg

�2
� x2 = �2xfxg+ fxg2 = O(x)

since fxg � 1. Thus,

jGj =
X
d�n

�(d)

�
n2

d2
+O

�n
d

��

= n2
X
d�n

�(d)

d

2

+O

0
@nX

d�n

j�(d)j

d

1
A :

Because j�(d)j � 1 for all d, the sum in the big-oh term is small,

X
d�n

j�(d)j

d
�
X
d�n

1

d
= Hn = O(log n):

As n ! 1 the sum
P

d�n
�(d)
d2

converges to some constant M
def

=
P1

d=1
�(d)
d2

. One

can even show that
���M�

P
d�n

�(d)
d2

��� � 1=n. Amazingly, it turns out that M = 6=�2!

Putting all together we announce the answer

jGj = 6
�2
� n2 +O(n log n):

We have arrived at the answer:

The probability that two random natural numbers are coprime is 6=�2.

Computing M

In this section we derive the amazing identity M = 6=�2 and show that the di�erence

M�
P

d�n
�(d)
d2

is indeed bounded by 1=n. We prove the latter claim �rst:

������M�
X
d�n

�(d)
d2

������ =
�����
X
d>n

�(d)
d2

����� �
X
d>n

1
d2

=

Z 1

n

dx

dxe2
�

Z 1

n

dx

x2
=

1

n
:
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Remarkably the in�nite sum that de�nes M can be rewritten as an in�nite product.
Let p1; p2; p3; : : : be all the prime numbers. Then we have the identity

M =
1X
d=1

�(d)

d2
=

�
1�

1

p21

��
1�

1

p22

��
1�

1

p23

�
� � � :

The identity holds because when we expand the product5 we obtain all possible terms of
the form (�1)k=p2i1p

2
i2
� � � p2ik where pi1 ; pi2 ; : : : ; pik are distinct primes. These are precisely

the non-zero terms in
P

d �(d)=d
2.

A similar expansion of 1=M yields a sum without the � function:

1=M =

�
1

1� p�2
1

��
1

1� p�2
2

�
� � � =

�
1 +

1

p21
+

1

p41
+ � � �

��
1 +

1

p22
+

1

p42
+ � � �

�
� � �

= 1 +
1

22
+

1

32
+

1

42
+

1

52
+ � � �

The last sum has a long history. Its evaluation was a famous problem until 1735, when
Euler �nally succeeded to show that it is equal to �2=6. You can read a version of the
proof in section 12.7 of the textbook.

5We cheat again by ignoring convergence of the in�nite product, and legality of formal expansion of
the product. It can be justi�ed by considering truncated products, and appealing to absolute convergence
of the series

P
�(d)=d2.
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