Exploring Combinatorics: homework $\#1^*$ Due 21 January 2013, at start of class

Collaboration is permitted, but is advised against, and all collaborators must be acknowledged. Collaboration may involve only discussion; all the writing must be done individually.

The number of points for each problem is specified in brackets. The problems appear in no special order. All answers must be justified.

- [2] How many 9-digit numbers can be made of digits 1, 2, ..., 9 so that for no value of *i* the *i*'th digit is *i*, and the number is not a palindrome. (A palindrome is a word, or a number that reads the same in either direction. So "rotator" and "121" are palindromes, but "abracadabra" and "42" are not.)
- 2. [2] Let $a, b \ge 1$ be integers. Give a combinatorial proof of

$$\binom{2a}{2b} \equiv \binom{a}{b} \pmod{2}.$$

3. [2] How many integral solutions of

$$x_1 + x_2 + x_3 + x_4 = 40$$

satisfy $x_1 \ge 2$, $x_2 \ge 4$, $x_3 \ge -3$, and $x_4 \ge 0$. Your answer may involve binomial coefficients and factorials, but no summation signs, ellipses or a similar notation.

4. [2] For each integer $n \ge 0$ and each $m \in \{0, 1, 2\}$ let $T_m(n)$ be the number of subsets of an *n*-element set whose size leaves remainder *m* when divided by 3.

Show that $T_m(n)$ is always equal to either $\lfloor 2^n/3 \rfloor$ or $\lceil 2^n/3 \rceil$. (*Hint:* Consider the differences $T_m(n) - 2^n/3$ for m = 0, 1, 2 and use induction).

^{*}This homework is from http://www.borisbukh.org/CombinatoricsSpring13/hw1.pdf.