21-373 Final exam theorem list

Two out of eight questions on the final exam will ask you to prove results that we proved in
class. This document is about them.

In proving the results you can use only results that precede it in the book/lectures. | For
example, you cannot use the classification of finite abelian groups to prove Application 1 on
page 61. |

You must clearly state all the results that you use in your proof

You can give any valid proof. You do not have to give the same proof as in the book or
lectures.

The proofs must contain all the details, including those that were left as exercises in the book
or lecture.

Below is a complete list of possible results that might appear on the final

. (Lemma 2.3.1) Let G be a group. Then

(a) The identity element of G is unique.

(b) Every a € G has a unique inverse in G.
) h=1l=q.
)

(c
(d) For all a,b € G, we have (a-b)"t =b"1.a"L.

For every a € G, we have (a™

. (Lemma 2.3.2) Let G be a group, and a,b € G. Then the equation a -z = b has a unique
solution in G.

. (Lemma 2.4.1) A nonempty subset of the group G is a subgroup if and only if

(a) a,b € H implies that ab € H,
(b) a € H implies that a=! € H.

. (Lemma 2.4.2) If H is a nonempty finite subset of a group G and H is closed under multipli-
cation, then H is a subgroup of G.

. (Lemma 2.4.5 and Theorem 2.4.1) Let H be a subgroup of a group G.

(a) There is a bijection between any two right cosets of H in G.
(b) If G is a finite, then o(H) divides o(G).

. (Corollary 1 on page 43) If G is a finite group and a € G, then o(a) | o(G).
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(Corollary 5 on page 44) If G is a finite group whose order is a prime number p, then G is a
cyclic group.

(Lemma 2.5.1) Let H, K be subgroups of a group G. Then HK is a subgroup G if and only
if HK = KH.

. (Theorem 2.5.1) Let H, K be fintie subgroups of a group G of orders o(H) and o(K). Then

o(HK) = <g}m%>

(Lemma 2.6.2) The subgroup N of G is a normal subgroup of G if and only if every left coset
of N in G is a right coset of IV in G.

(Lemma 2.7.3) Let G, G be groups. If ¢ is a homomorphism of G into G with kernel K, then
K is a normal subgroup of G.

(Theorem 2.7.1) Let G, G be groups. Let ¢ be a surjective homomorphism from G to G with
kernel K. Then G/K ~ G.

(Application 1 on page 61) Suppose G is a finite abelian group and p | o(G), where p is a
prime number. Then there is an element a # e such that o = e.

(Lemma 2.8.2) Z(G) ~ G/Z, where T is the group of inner automorphisms of G, and Z is the
center of G

(Theorem 2.9.1) Every group is isomorphic to a subgroup of A(S) for some appropriate S.
(Pages 78-80)

(a) Give a definition of an even permutation

(b) Prove that the set of even permutations in .S, is an index-2 subgroup.
(Theorem 2.11.2) If G is a group, and o(G) = p™ where p is a prime number, then Z(G) # (e).
(Page 86) If o(G) = p? where p is a prime number, then G is abelian.

(Slightly easier form of Theorem 2.12.1) If G is a group, p is a prime number and p® | o(G)
and p®*1 § o(G), then G has a subgroup of order p®.

(The “only if” direction of Theorem 2.14.2) Let p be a prime number. Let G, G’ be abelian
groups of order p™ and G = Ay x --- x Ay and G’ = By X --- X Bg, where each A; and
B; are cyclic of orders o(A;) = p™ and o(B;) = pfi satisfying ny > --- > np > 0 and
hi>--->hg>0. Then G and G’ are isomorphic only if k = s and for each i, n; = h;.

(Lemma 3.2.1 for rings with 1) If R is a ring with 1, then for all a,b € R

(Fixed Lemma 3.2.2) Let R be a finite integral domain with at least two elements. Then R
is a field.
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(Part of Theorem 3.4.1) Let R and R’ be rings and ¢: R — R’ be a surjective ring homomor-
phism with kernel U. Then R’ is isomorphic to R/U.

Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then
R is a field.

(Theorem 3.7.1 + its corollary on page 144) Prove that every Euclidean ring is a principal
ideal domain.

(Theorem 3.8.1) J[i] is a Euclidean ring.

(Lemma 3.8.1.) Let p be a prime integer and suppose that for some integer c relatively prime
to p we can find integers z and y such that 22 + y2 = ¢p. Then there exist integers a and b
such that p = a? + b°.

(Lemma 3.9.2) Let F be a field. Given two polynomials f(z) and g(z) # 0 in F[z], then there
exist two polynomials ¢(z) and r(z) in F[z] such that f(x) = t(x)g(z)+ r(x) where r(z) =0
or degr(x) < degg(x).

(Lemma 3.10.1) If f, g € J[z] are both primitive polynomials, then fg is a primitive polyno-
mial too.

(Lemma 3.11.4) Let R be a unique factorization domain, let F' be its field of quotients. If
f € RJx] is both primitive and irreducible as an element of R[z], then it is irreducible as an
element of F[z]. Conversely, if the primitive element of f € R[x] is irreducible as an element
of F[z], it is also irreducible as an element of R]x].

(Theorem 5.1.1) Let K, L, F be fields. If L is a finite extension of K and if K is a finite
extension of F', then [L: F| = [L: K][K : F].

(Theorem 5.1.2) Let F' be a subfield of K. Then a € K is algebraic over F' if and only if F'(a)
is a finite extension of F.

(Special case of Theorem 5.1.4) Let F' be a subfield of K. If a,b € K are algebraic over F,
then a + b is algebraic over F'.

(Theorem 5.1.5) If L is an algebraic extension of K and if K is an algebraic extension of F,
then L is an algebraic extension of F'.

(Problem 1 on page 219) Prove that e (the base of the natural logarithms) is irrational.

(Lemma 5.3.2) Let F' be a field. A nonzero polynomial f € F[z] of degree n can have at most
n roots in any extension of F'.

(Simplified Theorem 5.3.1) Let F be a field. If p(z) is a polynomial in F[z] of degree n > 1
and is irreducible over F, then there exists an extension F of F' in which p(x) has a root.

(Theorem 5.3.2) Let F be a field, and f(z) € F[z]| be of degree n > 1. Then there is an
extension F of F' of degree at most n! in which f(x) splits into linear factors.

(Lemma 5.5.2) Let F' be a field. The polynomial f(z) € F[z] has a multiple root if and only
if f(x) and f'(z) have a common factor of positive degree.

(Theorem 5.5.1) If F' is a field of characteristic 0 and if a,b are algebraic over F', then there
exists an element ¢ € F'(a,b) such that F'(a,b) = F(c).



