
21-373 Final exam theorem list

• Two out of eight questions on the final exam will ask you to prove results that we proved in
class. This document is about them.

• In proving the results you can use only results that precede it in the book/lectures. [ For
example, you cannot use the classification of finite abelian groups to prove Application 1 on
page 61. ]

• You must clearly state all the results that you use in your proof

• You can give any valid proof. You do not have to give the same proof as in the book or
lectures.

• The proofs must contain all the details, including those that were left as exercises in the book
or lecture.

• Below is a complete list of possible results that might appear on the final

1. (Lemma 2.3.1) Let G be a group. Then

(a) The identity element of G is unique.

(b) Every a ∈ G has a unique inverse in G.

(c) For every a ∈ G, we have (a−1)−1 = a.

(d) For all a, b ∈ G, we have (a · b)−1 = b−1 · a−1.

2. (Lemma 2.3.2) Let G be a group, and a, b ∈ G. Then the equation a · x = b has a unique
solution in G.

3. (Lemma 2.4.1) A nonempty subset of the group G is a subgroup if and only if

(a) a, b ∈ H implies that ab ∈ H,

(b) a ∈ H implies that a−1 ∈ H.

4. (Lemma 2.4.2) If H is a nonempty finite subset of a group G and H is closed under multipli-
cation, then H is a subgroup of G.

5. (Lemma 2.4.5 and Theorem 2.4.1) Let H be a subgroup of a group G.

(a) There is a bijection between any two right cosets of H in G.

(b) If G is a finite, then o(H) divides o(G).

6. (Corollary 1 on page 43) If G is a finite group and a ∈ G, then o(a) | o(G).
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7. (Corollary 5 on page 44) If G is a finite group whose order is a prime number p, then G is a
cyclic group.

8. (Lemma 2.5.1) Let H,K be subgroups of a group G. Then HK is a subgroup G if and only
if HK = KH.

9. (Theorem 2.5.1) Let H,K be fintie subgroups of a group G of orders o(H) and o(K). Then

o(HK) = o(H)o(K)
o(H∩K) .

10. (Lemma 2.6.2) The subgroup N of G is a normal subgroup of G if and only if every left coset
of N in G is a right coset of N in G.

11. (Lemma 2.7.3) Let G,G be groups. If ϕ is a homomorphism of G into G with kernel K, then
K is a normal subgroup of G.

12. (Theorem 2.7.1) Let G,G be groups. Let ϕ be a surjective homomorphism from G to G with
kernel K. Then G/K ≈ G.

13. (Application 1 on page 61) Suppose G is a finite abelian group and p | o(G), where p is a
prime number. Then there is an element a ̸= e such that ap = e.

14. (Lemma 2.8.2) I(G) ≈ G/Z, where I is the group of inner automorphisms of G, and Z is the
center of G

15. (Theorem 2.9.1) Every group is isomorphic to a subgroup of A(S) for some appropriate S.

16. (Pages 78-80)

(a) Give a definition of an even permutation

(b) Prove that the set of even permutations in Sn is an index-2 subgroup.

17. (Theorem 2.11.2) If G is a group, and o(G) = pn where p is a prime number, then Z(G) ̸= (e).

18. (Page 86) If o(G) = p2 where p is a prime number, then G is abelian.

19. (Slightly easier form of Theorem 2.12.1) If G is a group, p is a prime number and pα | o(G)
and pα+1 ∤ o(G), then G has a subgroup of order pα.

20. (The “only if” direction of Theorem 2.14.2) Let p be a prime number. Let G,G′ be abelian
groups of order pn and G = A1 × · · · × Ak and G′ = B1 × · · · × BS , where each Ai and
Bi are cyclic of orders o(Ai) = pni and o(Bi) = pHi satisfying n1 ≥ · · · ≥ nk > 0 and
h1 ≥ · · · ≥ hs > 0. Then G and G′ are isomorphic only if k = s and for each i, ni = hi.

21. (Lemma 3.2.1 for rings with 1) If R is a ring with 1, then for all a, b ∈ R

(a) a0 = 0a = 0

(b) a(−b) = (−a)b = −(ab)

(c) (−a)(−b) = ab

(d) (−1)a = −a

22. (Fixed Lemma 3.2.2) Let R be a finite integral domain with at least two elements. Then R
is a field.
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23. (Part of Theorem 3.4.1) Let R and R′ be rings and ϕ : R → R′ be a surjective ring homomor-
phism with kernel U . Then R′ is isomorphic to R/U .

24. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then
R is a field.

25. (Theorem 3.7.1 + its corollary on page 144) Prove that every Euclidean ring is a principal
ideal domain.

26. (Theorem 3.8.1) J [i] is a Euclidean ring.

27. (Lemma 3.8.1.) Let p be a prime integer and suppose that for some integer c relatively prime
to p we can find integers x and y such that x2 + y2 = cp. Then there exist integers a and b
such that p = a2 + b2.

28. (Lemma 3.9.2) Let F be a field. Given two polynomials f(x) and g(x) ̸= 0 in F [x], then there
exist two polynomials t(x) and r(x) in F [x] such that f(x) = t(x)g(x) + r(x) where r(x) = 0
or deg r(x) < deg g(x).

29. (Lemma 3.10.1) If f, g ∈ J [x] are both primitive polynomials, then fg is a primitive polyno-
mial too.

30. (Lemma 3.11.4) Let R be a unique factorization domain, let F be its field of quotients. If
f ∈ R[x] is both primitive and irreducible as an element of R[x], then it is irreducible as an
element of F [x]. Conversely, if the primitive element of f ∈ R[x] is irreducible as an element
of F [x], it is also irreducible as an element of R[x].

31. (Theorem 5.1.1) Let K,L, F be fields. If L is a finite extension of K and if K is a finite
extension of F , then [L : F ] = [L : K][K : F ].

32. (Theorem 5.1.2) Let F be a subfield of K. Then a ∈ K is algebraic over F if and only if F (a)
is a finite extension of F .

33. (Special case of Theorem 5.1.4) Let F be a subfield of K. If a, b ∈ K are algebraic over F ,
then a+ b is algebraic over F .

34. (Theorem 5.1.5) If L is an algebraic extension of K and if K is an algebraic extension of F ,
then L is an algebraic extension of F .

35. (Problem 1 on page 219) Prove that e (the base of the natural logarithms) is irrational.

36. (Lemma 5.3.2) Let F be a field. A nonzero polynomial f ∈ F [x] of degree n can have at most
n roots in any extension of F .

37. (Simplified Theorem 5.3.1) Let F be a field. If p(x) is a polynomial in F [x] of degree n ≥ 1
and is irreducible over F , then there exists an extension E of F in which p(x) has a root.

38. (Theorem 5.3.2) Let F be a field, and f(x) ∈ F [x] be of degree n ≥ 1. Then there is an
extension E of F of degree at most n! in which f(x) splits into linear factors.

39. (Lemma 5.5.2) Let F be a field. The polynomial f(x) ∈ F [x] has a multiple root if and only
if f(x) and f ′(x) have a common factor of positive degree.

40. (Theorem 5.5.1) If F is a field of characteristic 0 and if a, b are algebraic over F , then there
exists an element c ∈ F (a, b) such that F (a, b) = F (c).
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