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Finite abelian groups are products of cyclic groups

The simplest abelian groups are the cyclic groups. Not all groups are cyclic though. For
example, the group (Z/27Z) x (Z/27Z) is not cyclic; its order is 4, but its every element
satisfies 2z = 0.

It turns out that the group (Z/2Z) x (Z/27Z) is about as complicated as finite abelian
can ever be. Specifically, we shall show that every finite group is isomorphic to a product
of cyclic groups. The finiteness assumption is crucial: there are infinite groups that are
not isomorphic to a product of cyclic groups. The most familiar example is Q. We can
see that it is not a product of cyclic groups because Q is divisible, which means that for
every x € Q and every positive integer n there is y such that ny = x. On the other
hand, a product of indivisible groups is easily seen to be indivisible, and cyclic groups
are indivisible.

Theorem 1. Every finite abelian group is isomorphic to a product of cyclic groups.
The proof consists of two steps. The first step is the reduction to the case of p-groups.

Lemma 2. Suppose G is a finite abelian group, and Py, Ps, ..., Py are its Sylow subgroups
(for various primes) Then G = P} X -+ X P.

Proof. Since G is abelian, its subgroups are normal, and so there is just one Sylow p-
subgroup for each prime p. Let |G| = pil e p}i’“ be the prime factorization of |G|. Without
loss of generality, P; is a Sylow p;-subgroup of G, i.e., |G;| = pf’

We claim that, for each i, the set G; S P P,... P is a subgroup of G and G; =
P, x --- x P;. The proof is by induction. Since the case i = 1 is trivial, assume that
i > 1. Since the orders of G;—; and P; are coprime (by the induction hypothesis),
it follows that G;_1 N P; = 1. Since P, is normal in G, the set G;_1P; is actually a
subgroup of GG. Furthermore, since both P; an G;_1 are normal in G, we in fact have
G; = G;_1 P, =2 G; x P;, completing the induction step. O

*These notes are available from the course webpage, and directly from http://www.borisbukh.org/
AlgebraicStructuresFa1123/notes_finite_abelian.pdf


http://www.borisbukh.org/AlgebraicStructuresFall23/notes_finite_abelian.pdf
http://www.borisbukh.org/AlgebraicStructuresFall23/notes_finite_abelian.pdf

21-373: Algebraic Structures Finite abelian groups notes

The second step, which is more difficult, is to show that abelian p-groups are isomor-
phic to a product of cyclic groups. This relies on the following lemma.

Lemma 3. Suppose G is a finite abelian p-group and a € G is the element of the largest
order in G. Then there is a subgroup H of G such that (a) " H =0 and (a) + H = G.

Proof. Let the order of a be |a| = p™. The assumption on a implies that
p"xz =0 for every z € G. (1)

Let H be a largest subgroup of G satisfying (a) N H = 0. We want to show that
(a) + H = G.

Assume on the contrary that some zo € G satisfies g # (a) + H. Consider the
sequence g, pxo, . . ., p"To. Since the first element of the sequence is not in (a) + H, and
the last element is in (a) + H, there must exist some x in this sequence such that

x ¢ (a) + H, (2)
pr € (a) + H. (3)

The condition means that
pr=ta+h for some t € Z and h € H.

Combining this with we obtain 0 = p"x = p"~(ta + h) = (p" 't)a + p"'h. This
implies that the element (p"~'t)a = —p"~h is both in (a) and in H. Since (a) N H = 0,
it follows that (p"~'t)a = 0. Because |a| = p", we may infer that p | t.

Say t = pm for some m € Z. Let

def
Yy =T —ma.

Observe that y ¢ H and py = h € H.

Let H < H + (y); because y ¢ H, this group is strictly larger than H. We claim that
H'N{a) = 0, which would contradict the choice of H. Suppose that the claim is false, and
there is some non-zero element that is of the form sa = hg+ry for some hg € H and r € Z.
Note that p { ro, for otherwise the element sa = ho + ry would belong to both (a) and H.
Therefore, by the Euclidean algorithm, there exists ' € Z such that 77/ =1 (mod p), say
rr’ = 1+ pu. Because (s + rm)a = hg + rz, it follows that r'(s + rm)a = r'hg + x + pux
contradicting that assumption that = /(s + rm)a — r’hy — u(px) is not an element of
(a) + H. O

These lemma quickly imply Theorem Indeed, by Lemma [2] it suffices to prove
Theorem [1] only for the case when the finite group G is a p-group. This case follows from
Lemma[3| by induction on the order of G; we just need to apply the induction hypothesis
to the subgroup H from that lemma.



