
Algebraic Structures:

Finite abelian groups∗.
(Version 2: 30 September 2024)

Finite abelian groups are products of cyclic groups

The simplest abelian groups are the cyclic groups. Not all groups are cyclic though. For

example, the group (Z/2Z) × (Z/2Z) is not cyclic; its order is 4, but its every element

satisfies 2x = 0.

It turns out that the group (Z/2Z)× (Z/2Z) is about as complicated as finite abelian

can ever be. Specifically, we shall show that every finite group is isomorphic to a product

of cyclic groups. The finiteness assumption is crucial: there are infinite groups that are

not isomorphic to a product of cyclic groups. The most familiar example is Q. We can

see that it is not a product of cyclic groups because Q is divisible, which means that for

every x ∈ Q and every positive integer n there is y such that ny = x. On the other

hand, a product of indivisible groups is easily seen to be indivisible, and cyclic groups

are indivisible.

Theorem 1. Every finite abelian group is isomorphic to a product of cyclic groups.

The proof consists of two steps. The first step is the reduction to the case of p-groups.

Lemma 2. Suppose G is a finite abelian group, and P1, P2, . . . , Pk are its Sylow subgroups

(for various primes) Then G ∼= P1 × · · · × Pk.

Proof. Since G is abelian, its subgroups are normal, and so there is just one Sylow p-

subgroup for each prime p. Let |G| = pt11 · · · ptkk be the prime factorization of |G|. Without

loss of generality, Pi is a Sylow pi-subgroup of G, i.e., |Gi| = ptii .

We claim that, for each i, the set Gi
def
= P1P2 . . . Pi is a subgroup of G and Gi

∼=
P1 × · · · × Pi. The proof is by induction. Since the case i = 1 is trivial, assume that

i > 1. Since the orders of Gi−1 and Pi are coprime (by the induction hypothesis),

it follows that Gi−1 ∩ Pi = 1. Since Pi is normal in G, the set Gi−1Pi is actually a

subgroup of G. Furthermore, since both Pi an Gi−1 are normal in G, we in fact have

Gi = Gi−1Pi
∼= Gi × Pi, completing the induction step.

∗These notes are available from the course webpage, and directly from http://www.borisbukh.org/

AlgebraicStructuresFall23/notes_finite_abelian.pdf
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The second step, which is more difficult, is to show that abelian p-groups are isomor-

phic to a product of cyclic groups. This relies on the following lemma.

Lemma 3. Suppose G is a finite abelian p-group and a ∈ G is the element of the largest

order in G. Then there is a subgroup H of G such that ⟨a⟩ ∩H = 0 and ⟨a⟩+H = G.

Proof. Let the order of a be |a| = pn. The assumption on a implies that

pnx = 0 for every x ∈ G. (1)

Let H be a largest subgroup of G satisfying ⟨a⟩ ∩ H = 0. We want to show that

⟨a⟩+H = G.

Assume on the contrary that some x0 ∈ G satisfies x0 ̸= ⟨a⟩ + H. Consider the

sequence x0, px0, . . . , p
nx0. Since the first element of the sequence is not in ⟨a⟩+H, and

the last element is in ⟨a⟩+H, there must exist some x in this sequence such that

x /∈ ⟨a⟩+H, (2)

px ∈ ⟨a⟩+H. (3)

The condition (3) means that

px = ta+ h for some t ∈ Z and h ∈ H.

Combining this with (1) we obtain 0 = pnx = pn−1(ta + h) = (pn−1t)a + pn−1h. This

implies that the element (pn−1t)a = −pn−1h is both in ⟨a⟩ and in H. Since ⟨a⟩ ∩H = 0,

it follows that (pn−1t)a = 0. Because |a| = pn, we may infer that p | t.
Say t = pm for some m ∈ Z. Let

y
def
= x−ma.

Observe that y /∈ H and py = h ∈ H.

Let H ′ def
= H+ ⟨y⟩; because y /∈ H, this group is strictly larger than H. We claim that

H ′∩⟨a⟩ = 0, which would contradict the choice of H. Suppose that the claim is false, and

there is some non-zero element that is of the form sa = h0+ry for some h0 ∈ H and r ∈ Z.
Note that p ∤ r0, for otherwise the element sa = h0+ ry would belong to both ⟨a⟩ and H.

Therefore, by the Euclidean algorithm, there exists r′ ∈ Z such that rr′ ≡ 1 (mod p), say

rr′ = 1+ pu. Because (s+ rm)a = h0 + rx, it follows that r′(s+ rm)a = r′h0 + x+ pux

contradicting that assumption that x = r′(s+ rm)a− r′h0 − u(px) is not an element of

⟨a⟩+H.

These lemma quickly imply Theorem 1. Indeed, by Lemma 2 it suffices to prove

Theorem 1 only for the case when the finite group G is a p-group. This case follows from

Lemma 3 by induction on the order of G; we just need to apply the induction hypothesis

to the subgroup H from that lemma.
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