Algebraic Methods in Combinatorics: homework #1* Due 4 February 2019, at start of class

Collaboration and use of external sources are permitted, but discouraged, and must be fully acknowledged and cited. Collaboration may involve only discussion; all the writing must be done individually.

The number of points for each problem is specified in brackets. The problems appear in no special order.

- 1. [2] Suppose S and T are two families of subsets of [n] such that $|S \cap T|$ is odd for every $S \in S$ and $T \in T$. Show that $|S||T| \leq 2^{n-1}$.
- 2. Not far from Eventown and Oddtown there lies another settlement: Squaretown. It has *n* inhabitants, who have adopted for an even-stranger city charter than its sister towns. In Squaretown, each club has square-many members, and any two clubs share square-many members.
 - (a) [1] Show that Squaretown can have no more than $2^{O(\sqrt{n}\log n)}$ clubs.
 - (b) [1] Show that Squaretown can have as many as $2^{\Omega(\sqrt{n})}$ clubs.
- 3. [1] Let v_1, \ldots, v_m be vectors with n integer entries, each of which is 0 or 1. Show that they are linearly independent over \mathbb{Q} if and only if they are linearly independent over \mathcal{F}_p for all sufficiently large p. How large is "sufficiently large"?
- 4. [2] Let s be a positive integer. Suppose A_1, \ldots, A_m are subsets of an n-element set such that the sizes of A_1, \ldots, A_m are not divisible by s, but $|A_i \cap A_j|$ are, for any distinct i and j. For s = 6, show that $m \leq 2n$. For general s, show that there is a constant c(s) such that $m \leq c(s)n$. (Open problem: must c(s) depend on s?)

^{*}This homework is from http://www.borisbukh.org/AlgMethods19/hw1.pdf.

21-801: Algebraic Methods in Combinatorics

- 5. (a) [1] Show that for each B there exists a number $\varepsilon > 0$ such that if f(x) is a non-zero univariate polynomial whose coefficients are integers not exceeding B, then $f(x) \neq 0$ for all $x \in (0, \varepsilon)$.
 - (b) [1] Show that there exists $r_0 = r_0(d)$ sufficiently large so that the following holds for all $r > r_0$. Whenever $P \subset \mathbb{R}^d$ is a two-distance set in which distance between any two points are 1 and r, then $|P| \leq d + 1$. (Hint: prove the same for one-distance sets first.)
- 6. [2] Let A_1, \ldots, A_m be subsets of an *n*-element set. Suppose $|A_i|$ is odd for all *i*, and all triplewise intersections $|A_i \cap A_j \cap A_k|$ are even (for distinct *i*, *j* and *k*). Show that there is a constant *C* such that $m = O(n^C)$.