
21-801: Algebraic Methods in Combinatorics Rank argument notes

1 Basic rank argument

We start with the simplest algebraic technique, the rank argument. The idea is
to associate to each object of interest a vector in such a way that the resulting
vectors are linearly independent. It then follows that the number of objects
does not exceed the dimension of the vector space. We start with three basic
applications.

Eventown and Oddtown There was a town, called Eventown, with 100
inhabitants, who loved forming clubs of all sorts. For aesthetic reasons the city
planning department had the following three rule pertaining to club-formation:

1. Each club has an even number of members;

2. Any two clubs have even-many members in common;

Since these rules did not prevent creation of infinitely many clubs with the
same membership list, as a matter of practical convenience the following rule
was adopted.

3. No two clubs can have identical membership.

Despite this restriction, the citizens of the city formed a huge number, 250,
of clubs. They did this by breaking themselves into pairs, and making clubs out
of the pairs in all possible ways (including the famous Void Club).

After a while, a group of citizen emerged that condemned such a profusion
of club as decadent. They left the town to form a settlement of their own, which
they called Oddtown. The new rules for making clubs there were these:

1. Each club has an odd number of members;

2. Any two clubs have even-many members in common.

These two rules made the rule 3 redundant, and so it was eliminated. The
following theorem provided the guaranteed bound on the number of clubs:

Theorem 1. Let n be the population of the Oddtown. Then the number of clubs
in Oddtown is at most n.

Proof. Number the inhabitants 1 through n. It is convenient to regard clubs as
mere sets of members; let S1, . . . , Sm ⊂ {1, 2, . . . , n} be these sets.

Associate to each Ci a characteristic vector, which we shall call vi. It is a vec-
tor of length n, whose coordinates record if the corresponding town inhabitant
is a member of Ci. In symbol-speak,

vi,k =

{
1 if k ∈ Si

0 if k 6∈ Si.
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Let u · w =
∑

k ukwk be the standard dot product of vectors. Then vi · vj
is equal to |Si ∩ Sj |. In particular, if we regard vi and vj as vectors in Zn

2 , we
obtain

vi · vj =

{
1 if i = j,

0 if i 6= j.

A familiar argument implies that the vectors v1, . . . , vm are linearly indepen-
dent: Indeed, suppose

∑
λivi = 0. Then taking the dot product with vj yields

0 =
∑
λivi · vj = λj . As j is arbitrary, this implies that there are no non-trivial

linear dependencies.

Equal unions The next theorem illustrates the importance of choosing the
right field to work over. The proof below crucially depends on the ordering of
R.

Theorem 2. Suppose S1, . . . , Sm are non-empty subsets of an n-element set.
Suppose m ≥ m+1. Then there are disjoint non-empty sets I1 and I2 such that⋃

i∈I1

Si =
⋃
i∈I2

Si. (1)

Proof. As in the Oddtown problem, we denote by vi the characteristic vector of
the set Si. We treat the characteristic vectors as living in Rn. As m ≥ n+1, the
vectors are linearly dependent over R. So, there exist real numbers λ1, . . . , λn,
not all of which are zero, such that∑

i

λivi = 0.

Let

I1 = {i : λi > 0},
I2 = {i : λi < 0}.

We then have ∑
i∈I1

λivi =
∑
i∈I2

(−λi)vi. (2)

Let u denote the common value of the two sums in the equation above. As vi’s
are non-zero, the vector u is non-zero too. In particular, both I1 and I2 are
non-empty.

Consider suppu = {j : u6 = 0}. From the left side of (2), we see that
suppu =

⋃
I1
Si. Similarly, the right side yields suppu =

⋃
I2
Si. Hence, (1)

holds.

We note that the bound is sharp, as seen by sets {1}, {2}, . . . , {n}.
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2 Which subspace is it?

Sometimes we construct vectors in some vector space V only to find out that
they in fact live in a much smaller space that is a subspace of V . Due to its
smaller dimension, that gives a better bound on the number of vectors.

Two-distance sets Consider an equilateral triangle in the plane. Any two of
its three vertices lie at the same distance from each other. Same is true for the
four vertices of a regular tetrahedron in R3. In general, in Rn there exist sets
of n+ 1 points that are mutually equidistant. The number n+ 1 is the largest
possible; there exist no sets of n+ 2 pairwise equidistant points in Rn (why?).

As a generalization, call a set P ⊂ Rn two-distance set if there are numbers
r1 and r2 such that distance between any pair of points in P is either r1 or r2.
How many points can a two-distance set have? A crude bound can be obtained
from Ramsey’s theorem (how?), but linear algebra is more appropriate tool:

Theorem 3. Let m2(n) be the maximum cardinality of a two-distance set in
Rn. Then

m2(n) ≤ (n+ 1)(n+ 4)/2.

Proof. Suppose P is a two-distance in Rn. Denote by ‖·‖ the Euclidean norm
on Rn. Let F (x, y) =

(
‖x− y‖2− r21

)(
‖x− y‖2− r22

)
. By assumption, whenever

p, p′ are two points in P we have

F (p, p′) =

{
r21r

2
2 if p = p′,

0 if p 6= p′.
(3)

For each p ∈ P let fp : Rn → R be the function fp(x) = F (x, p). Relation (3)
implies that the functions {fp}p∈P are linearly independent. Indeed,

∑
λpfp = 0

implies that 0 =
∑
λpfp(p′) = λp′r21r

2
2, and so λp′ is zero. So, |P | is bounded

by the dimension of the space of functions to which fp’s belong. What is that
space?

The simplest answer is that fp’s belong to the space polynomials of degree 4
in n variables. The dimension of the latter space is

(
n+4
4

)
, and so m(n) ≤

(
n+4
4

)
.

However, fp actually belong to a much smaller space. To see that, let us take a
closer look at fp.

The degree-4 component of fp is (
∑

i x
2
i )2. The degree-3 component of fp

is a linear combination of terms of the form (
∑

i x
2
i )xj . Similar analysis of the

lower degree components of fp shows that fp is a linear combination of

(
∑
i

x2i )2, (
∑
i

x2i )xj , xixj , xi, 1.

As the preceding list has 1 + n+
(
n+1
2

)
+ n+ 1 = (n+ 1)(n+ 4)/2 functions on

it, it follows that m2(n) ≤ (n+ 1)(n+ 4)/2, as announced.
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Surprisingly, this bound can strengthened by showing that the functions fp
lie in even smaller space. We will not prove that directly. Instead, we will show
that we can add several functions to the family {fp}p∈P such that the resulting
collection still belongs to the same vector space as in the preceding proof.

Claim 4. With the notation of the previous proof, the original functions {fp}p∈P

and n + 1 additional function x1, . . . , xn together form a linearly independent
set. In particular m(n) + n+ 1 ≤ (n+ 1)(n+ 4)/2.

Proof. To each point p ∈ P associate its projectivization p̄ = (1, p1, . . . , pn). Let
M be the matrix whose columns are p̄ as p runs over P . We can assume that
M is of full rank, for otherwise, the set P lies in a proper affine subspace of Rn.

Consider a linear dependence

∑
p

λpfp +

n∑
j=0

τjxj = 0. (4)

As all fp’s have the same degree-4 homogeneous part, it follows that∑
p∈P

λp = 0. (5)

Similarly, since the degree-3 part is −4
(∑

x2i
)∑

p λpxjpj , it follows that∑
p∈P

λppj = 0, for all j = 1, . . . , n. (6)

We can write (5) and (6) together as

M~λ = 0.

Applying (4) to a point q ∈ P yields r21r
2
2λq +

∑n
j=0 τjqj = 0, which is equivalent

to
r21r

2
2
~λ+ ~τM = 0

Multiplying by matrix MT on the right (or equivalently multiplying qi and
summing over q) yields

~τMMT = 0

Since M is of full rank, MMT is nonsingular, implying ~τ = 0. The rest follows
from the preceding proof.

Equal unions and intersections In preceding section we showed that among
n + 1 sets one can find two families with the same union. Since complement
turns unions into intersections, n+ 1 sets also suffice if desire two families with
same intersections. The next result surprisingly shows that we need only one
more set to ensure that both conditions hold simultaneously.

4



21-801: Algebraic Methods in Combinatorics Rank argument notes

Theorem 5. Suppose S1, . . . , Sm are non-empty subsets of an n-element set.
Suppose m ≥ m+1. Then there are disjoint non-empty sets I1 and I2 such that⋃

i∈I1

Si =
⋃
i∈I2

Si,⋂
i∈I1

Si =
⋂
i∈I2

Si.

Proof. By de Morgan’s laws, the second condition condition is equivalent to⋂
i∈I1

S̄i =
⋂

i∈I2
S̄i. Let vi be the characteristic vector of Si, and let ui be the

characteristic vector of S̄i. By the same argument from the proof of Theorem 2
it suffices to find real numbers, not all of which are zero, λ1, . . . , λn such that∑

i

λivi = 0,∑
i

λiui = 0.
(7)

It is easy to find such λi’s if m ≥ 2n+1. Indeed, let wi = (vi, ui). The vector
wi is an element of Rn×Rn, and can be thought of as a simply the concatenation
of the vectors vi and ui. If m ≥ 2n+ 1, then the vectors w1, . . . , wm are linearly
dependent, and so there exist non-trivial coefficients λi such that

∑
i λiwi = 0.

The latter equation is equivalent to (7).
To bring down the dimension of the ambient space, we note that all of wi

are contained in V = {(v, w) ∈ Rn × Rn : v1 + w1 = · · · = vn + wn = 1}. The
set V is not a vector space, it is an affine subspace of dimension n. It is however
contained in the vector space {(v, w) ∈ Rn × Rn : v1 + w1 = · · · = vn + wn} of
dimension n+1. As every set n+2 vectors in this space are linearly dependent,
and the rest of the proof proceeds as before.

It is also possible to prove the same result using the projectivization. One
notes that the vectors v̄i are linearly dependent, and then uses that ui = ~1− vi
to argue that in (7) the first equation implies the second.
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