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1 Multilinear and alternating functions

We have already encountered multilinear polynomials in the proofs of in-
tersection theorems of Frankl–Wilson and Ray-Chaudhuri–Wilson. We will
now extend the notion to functions on an arbitrary product of vector spaces.

Let W1, . . . ,Wk, V be vector spaces over some field F. A function

f : W1 × · · · ×Wk → V

is multilinear if it is linear in each of the k variables separately. In other
words,

f(. . . , wi−1,
∑
j

αjwij , wi+1, . . . ) =
∑
j

αjf(. . . , wi−1, wij , wi+1, . . . ),

for any choice of w1 ∈W1, w2 ∈W2, etc.
There are special names for multilinear functions when k is small. When

k = 2 we speak of a bilinear function functions, and of trilinear functions
when k = 3. In general, we may call f a k-linear function.

Example: Recall that a polynomial on Fn is called multilinear if it
is a linear combination of monomials of the form xI

def
=
∏

i∈I xi. Such a
polynomial is the same as a multilinear function f : F× · · · × F→ F.

A special class of multilinear functions are alternating functions. If f
is a multilinear function, W1 = . . . = Wk and f(w1, . . . , wk) = 0 whenever
wi = wj for some i 6= j, then we say that f is alternating.

Example: Given a vectors w1, . . . , wn ∈ Fn let [w1, . . . , wn]T be the
n-by-n matrix whose rows are w1, . . . , wn in that order. Then the function
D(w1, . . . , wn) = det[w1, . . . , wn]T is alternating.

Lemma 1. Let f : W × · · · ×W → V be an alternating function. Then the
following hold:

a) f(. . . , wi−1,
∑
αjwj , wi+1, . . . ) = αif(. . . , wi−1, wi, wi+1, . . . )

b) f(. . . , wi, . . . , wj , . . . ) = −f(. . . , wj , . . . , wi, . . . ).

c) If e1, . . . , en are a basis for W , then for every w1, . . . , wk ∈W we have

f(w1, . . . , wk) ∈ span{f(ej1 , . . . , ejk) : j1 < · · · < jk}.
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The property (b) is the one responsible for the name ‘alternating’. If
charF 6= 2, then it is easy to see that a multilinear functions satisfying
property (b) is alternating in our sense. However, if charF = 2, the impli-
cation fails, as witnessed by the function F2×F2 → F2 that is non-zero only
when both of its arguments are non-zero.

Proof of Lemma 1.

a) This follows by invoking multilinearity, and noting all the terms save
for one vanish.

b) This is a consequence of (a) and the following computation:

f(. . . , wi, . . . , wj , . . . ) = f(. . . , wi + wj , . . . , wj , . . . )

= f(. . . , wi + wj , . . . , wj − (wi + wj), . . . )

= −f(. . . , wi + wj , . . . , wi, . . . )

= −f(. . . , wj , . . . , wi, . . . ).

c) Let wi =
∑

j aijej . Then by multilinearity

f(w1, . . . , wn) =
∑

j1,...,jk

α1j1 · · · · · αkjkf(ej1 , . . . , ejk).

The terms in which same basis vectors appears twice vanish, whereas
the remaining terms can be arranged so that j1 < j2 < . . . < jk by
repeated application of (b).

2 Exterior powers

In this section we shall work with vector space W = Fn exclusively. The
part (c) of Lemma 1 tells us that if f is an alternating function on W k, then
f(W k) spans an at most

(
n
k

)
-dimensional space. Intuitively, dim span f(W k) =(

n
k

)
holds whenever there are no relations between values of f other than

those implied by the alternating property of f . We shall make this intuition
rigorous below, but for now we exhibit an alternating function such that
f(Wk) spans a

(
n
k

)
-dimensional space.

Theorem 2. For each k, there exists a
(
n
k

)
-dimensional space Tk and an

alternating function fk : Fn × · · · × Fn → Tk, and, for each k and l, there
exists a bilinear function gkl : Tk × Tl → Tk+l that satisfy the following two
properties:
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a) dim span{fk(w1, . . . , wk) : w1, . . . , wk ∈ Fn} =
(
n
k

)
,

b) gkl
(
fk(w1, . . . , wk), fl(u1, . . . , ul)

)
= fk+l(w1, . . . , wk, u1, . . . , ul).

Proof. We define Tk
def
= F([n]

k ). In other words, Tk a
(
n
k

)
-tuples of elements

from F indexed by k-element subsets of [n].
Given vectors w1, . . . , wk ∈ Fn, form a k-by-n matrix A whose rows are

w1, . . . , wk (in that order). Then for a set I ∈
([n]
k

)
let AI be the k-by-k

submatrix of A that is made of columns indexed by the set I. Then define
fk : W × · · · ×W → Tk by

fk(w1, . . . , wk)I = detAI .

The function f is multinear because det is multilinear, and it is alternating
because det is alternating. To see that fk satisfies part (a), consider any k
distinct basis vectors ei1 , . . . , eik in Fn. Then

f(ei1 , . . . , eik)I =

{
±1 if I = {i1, . . . , ik},
0 otherwise,

where the sign is determined by the order of i1, . . . , ik. So, each element of
the standard basis of Tk is in the image of f , and so span f(W k) = Tk.

Defining gkl is simple but cumbersome: we first let Σ(I)
def
=
∑

i∈I i, then

for each I ∈
( [n]
k+l

)
we put

gkl(x, y)I = (−1)Σ([k])
∑

I1∪I2=I

I1∈([n]
k )

I2∈([n]
l )

(−1)Σ(I1)xI1yI2 .

The part (b) of the lemma amounts to the identity

detC = (−1)Σ([k])
∑

I1∪I2=I

I1∈([n]
k )

I2∈([n]
l )

(−1)Σ(I1) detAI1 · detBI2

where C is a matrix of the form C =
[
A
B

]
where A,B are the k-by-n, and

l-by-n matrices respectively. To see the identity, note that both sides are
polynomials made of the same monomials, and we just need to check that
the signs match. The latter is verified by noting that the signs match for
I1 = [k], and that swapping an integer from I1 with one in I2 changes the
sign correctly.
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The vector spaces Tk are called exterior powers of Fn, and are tradi-
tionally denoted by

∧k Fn. The functions fk and gkl are called alternating
product and denoted by the same wedge symbol ∧. In particular, the identity
gkl(fk, fl) = fk+l from part (b) of the preceding lemma is written concisely
as

(w1 ∧ · · · ∧ wk) ∧ (v1 ∧ · · · ∧ vl) = w1 ∧ · · · ∧ wk ∧ v1 ∧ · · · ∧ vl,

and expresses associativity of the alternating product. Of course, the alter-
nating product is not commutative since w ∧ w′ = −w′ ∧ w.

3 From subspaces to vectors

The k-dimensional subspaces in Fn can be naturally regarded as vectors in∧k Fn. Indeed, given a subspace U with a basis u1, . . . , uk we can consider
the vector

∧U def
= u1 ∧ · · · ∧ uk.

The vector is non-zero since the matrix A = [u1, . . . , uk]T has rank k, and
so detAI 6= 0 for some k-by-k minor.

As defined, ∧U depends on the choice of the basis in U , but it does so
only slightly. If u′1, . . . , u

′
k is any other basis, then by part (c) of Lemma 1

it follows that u′1 ∧ · · · ∧ u′k = λu1 ∧ · · · ∧ uk for some scalar λ. Hence, we
can regard ∧U as a vector in the projective space (∧kFn)/F∗. Below we will
abuse notation and pretend that ∧U is an element of ∧kFn.

Note that (∧U)∧ v = 0 if and only if v ∈ ∧U . In particular, this implies
that ∧U completely determines the set of vectors in U , i.e., the map U 7→ ∧U
is injective. However, not every vector in

∧k Fn is of the form ∧U . Indeed,
the space of all k-dimensional subspaces of Fn is k(n − k)-dimensional1,
whereas dim

∧
Fn =

(
n
k

)
is much larger.

A special case important in the computer graphics is the case k = 2 and
n = 4. Thinking projectively, a 2-dimensional subspace of R4 corresponds
to a line in R3. Thus, the map U 7→ ∧U associates to each line in R3 a
sixtuple of numbers. This sixtuple is known as Plücker coordinates of the
line.

1The collection of all k-dimensional subspaces forms an algebraic variety, called the
Grassmannian. As we have not yet defined the notion of dimension for algebraic varieties,
the statement is informal: to specify a k-dimensional subspace of Fn we ‘need’ k(n − k)
scalars.
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4 Bollobás-type theorems

We start by giving another proof of the skew version of Bollobás’s theorem.
The proof is due to Lovász.

Theorem 3. Suppose (A1, B1), . . . , (Am, Bm) are pairs of sets that satisfy

a) Ai is an r-element set, and Bi is an s-element set, for all i,

b) Ai ∩Bi = ∅, for all i,

c) Ai ∩Bj 6= ∅, for all i < j.

Then the number of pairs is m ≤
(
r+s
s

)
.

Proof. Let X be a finite set containing all the Ai’s and Bi’s. Let W = Rr+s

and associate to each x ∈ X a vector wx such that the vectors {wx : x ∈ X}
are in general position, i.e., no r + s of them are linearly dependent.

To each subset S ⊂ X associate a vector wS
def
=
∧

x∈S ws. With this
association we have, for any sets A,B ⊂ X satisfying |A|+ |B| ≤ r + s,

wA ∩ wB = 0 ⇐⇒ A ∩B 6= ∅.

Indeed, if A ∩ B 6= ∅, then the alternating product wA ∧ wB contains a
repeated element. Conversely, if A ∩ B = ∅, then A ∪ B is a linearly inde-
pendent set, and so wA ∧ wB is non-zero.

In particular,

wAi ∧ wBi

{
6= 0 if i = j,

= 0 if i < j,

and so the vectors wA1 , . . . , wAm ∈
∧r Rr+s are linearly independent. Since

dim
∧k Rr+s =

(
r+s
r

)
, it follows that m ≤

(
r+s
r

)
.

In Bollobás’s theorem the pairs are classified according to whether they
intersect or not. In the following extension of the result, due to Füredi, the
pairs are classified by the size of the intersection.

Theorem 4. Let t be a nonnegative integer. Suppose (A1, B1), . . . , (Am, Bm)
are pairs of sets that satisfy

a) Ai is an r-element set, and Bi is an s-element set, for all i,

b) |Ai ∩Bi| ≤ t, for all i,

c) |Ai ∩Bj | ≥ t+ 1, for all i < j.
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Then the number of pairs is m ≤
(
r+s−2t
r−t

)
.

The result is tight. To see that, set the ground set to be [r+ s− 2t], and
let Ai be a union of [t] and any (r− t)-element subset of [r+ s− t] \ [t], and
Bi be the union of [t] and remaining elements from [r + s− t] \ [t].

We will deduce 4 from a related result for subspace intersections.

Theorem 5. Suppose (U1, V1), . . . , (Um, Vm) are pairs of subspaces of a vec-
tors space over a field F. Assume that

a) Ui is r-dimensional, and Bi is s-dimensional, for all i,

b) dim(Ai ∩Bi) ≤ t, for all i,

c) dim(Ai ∩Bj) ≥ t+ 1, for all i < j.

Then m ≤
(
r+s−2t
r−t

)
.

Lemma 6. Suppose U1, . . . , Ur are subspaces of a finite-dimensional vector
space W over an infinite field F, and let d be a nonnegative integer not
exceeding dimW . Then the following hold:

a) There exists a linear mapping φ : W → Fd such that

dimφ(Ui) = min(dimUi, d).

b) There exists a codimension d subspace L such that

dim(L ∩ Ui) = max(dimUi − d, 0).

We postpone the proof of these assertion until our discussion of algebraic
varieties later in the course. Intuitively, since F is infinite, ‘almost all’ maps
φ (resp. subspaces L) satisfy any one of these conditions, and there are only
finitely many of these conditions. One can also prove this assertion directly
working in coordinates (exercise!). An easier exercise is to show that the
two assertions are equivalent.

Proof of 5. We may assume that the field F is infinite; if F is finite, we can
replace F by its algebraic closure.

By part (b) of Lemma 6 there exists a subspace L of codimension t that
satisfies

dim(Ui ∩ L) = r − t,
dim(Vi ∩ L) = s− t,

dim(Ui ∩ Vi ∩ L) = 0,

dim(Ui ∩ Vj ∩ L) ≥ 1, for i < j.
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Let U ′i
def
= Ui ∩L and V ′i

def
= Vi ∩L. We have thus reduced the problem to

the case t = 0 for the pairs (U ′1, V
′

1), . . . , (U ′m, V
′
m) ∈ Fr−t × Fs−t. The next

step is to reduce the dimension of the ambient space.
By part (a) of Lemma 6 there exists a linear map φ : W → Fr+s−2t such

that the spaces Ũi
def
= φ(U ′i) and Ṽj

def
= φ(V ′j ) have the same dimensions as

U ′i and V ′j respectively, and dim span Ũi ∪ Ṽj = dim spanU ′i ∪ V ′j . The latter

condition implies U ′i ∩ V ′j = {0} if and only if Ũi ∩ Ṽj = {0}.
Let ui = ∧Ũi and vj = ∧Ṽj It follows that

ui ∧ vj

{
6= 0 if i = j,

= 0 if i < j,

and so the vectors u1, . . . , um ∈
∧rW are linearly independent. Since these

are vectors in
∧r Fr+s−2t, we conclude that m ≤

(
r+s−2t
r−t

)
.

Proof of Theorem 4. Without loss the ground set is [n]. Let e1, . . . , en be the
standard basis vectors for Fn. Associate to each set S the vectors space VS =
span{ei : i ∈ S}. Then the vector space pairs (VA1 , VB1), . . . , (VAm , VBm)
satisfy the assumption of Theorem 5.
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