Algebraic Methods in Combinatorics: homework #5* Due 19 November 2014, at start of class

- 1. [2] Let $k \ge 1$ be a fixed integer. Show that the set $S_k \stackrel{\text{def}}{=} \{x \in \mathbb{F}_p : x+1, x+2\dots, x+k \text{ are all squares }\}$ has size $2^{-k}p + O(\sqrt{p})$ as $p \to \infty$.
- 2. [2+2]
 - (a) Suppose $f(x, y, z) \in \mathbb{F}_p[x, y, z]$ is a non-zero polynomial whose degrees in x, y and z are at most A, B and C respectively. Show that if (A + 1)(B + 1) < n, and A + Bn < p then $f(x, x^n, (x - 1)^n)$ is a non-zero polynomial.
 - (b) Suppose $n \mid p-1$, and let $H = \{x : x^n = 1\}$ be the subgroup of order n of \mathbb{F}_p^* . Use part (a) to deduce that $|H \cap (H+1)| = O(n^{2/3})$ if $n \le p^{3/4}$.
- 3. [2] Let \mathbb{F} be an infinite field. Suppose $f, g \in \mathbb{F}[x, y, z]$ have degrees m and n respectively, and have no common factor. Show that the set $\{f = 0\} \cap \{g = 0\}$ contains at most $(\deg f)(\deg g)$ lines.

^{*}This homework is from http://www.borisbukh.org/AlgMethods14/hw5.pdf.