Algebraic Methods in Combinatorics: homework #4* Due 5 November 2014, at start of class

Collaboration and use of external sources are permitted, but discouraged, and must be fully acknowledged and cited. Collaboration may involve only discussion; all the writing must be done individually.

The number of points for each problem is specified in brackets. The problems appear in no special order.

- 1. [2] Give an efficient algorithm, whose input is a function $F : \mathbb{F}_q \to \mathbb{F}_q$, and whose output is a pair of polynomials $P_1, P_2 \in \mathbb{F}_q$ with the following property: Whenever F agrees with a polynomial P in at least (34/100)q points and deg $P(x) \leq q/500$, we have $P \in \{P_1, P_2\}$. (You might assume that you have an access to an efficient algorithm to factor a single-variable polynomial into irreducible factors.)
- 2. [2] Suppose l_1, l_2, l_3 are three non-coplanar lines in \mathbb{F}_q^3 meeting at a point p, and $f(x_1, x_2, x_3)$ is a polynomial vanishing on each of l_1, l_2, l_3 . Suppose deg $f \leq q 1$. Show that $\nabla f(p) = 0$. Show that the condition deg $f \leq q 1$ is necessary.
- 3. [2] Alice picks a set S of m points in $[n]^d$, and then repeatedly does the following: whenever three points of S lie on an axis-parallel line, all points on that lie are added to S. After a while, Alice ended with the set $[n]^d$. Show that $m \geq 3^d$.
- 4. [1] Call a vector space L of functions from \mathbb{F}^n to \mathbb{F} *d-good* if whenever $f \in L$ vanishes on d+1 point of a line, then f also vanishes on the whole line. Show that the dimension of any *d*-good vector space is at most $(d+1)^n$.

^{*}This homework is from http://www.borisbukh.org/AlgMethods14/hw4.pdf.