Algebraic Methods in Combinatorics: homework #2* Due 6 October 2014, at start of class

Collaboration and use of external sources are permitted, but discouraged, and must be fully acknowledged and cited. Collaboration may involve only discussion; all the writing must be done individually.

The number of points for each problem is specified in brackets. The problems appear in no special order.

- 1. Suppose X is a finite set, $x_1, \ldots, x_n \in X$ and functions $f_1, \ldots, f_n \colon X \to \mathbb{F}_3$ satisfy
 - $f_i(x_i) = 0$,
 - $f_i(x_j) \neq 0$ for i < j.

Let $m = \dim \operatorname{span}\{f_1, \ldots, f_n\}.$

- (a) [2] Show that $\binom{m+1}{2} \ge n-1$.
- (b) [1 extra credit] Prove or disprove that for infinitely many values of n the above bound is tight.
- 2. (a) [2] Let X be a finite set, $k \in \mathbb{N}$. Suppose $A^{(1)}, \ldots, A^{(m)} \in X^k$ are k-tuples of distinct elements from X such that for all r < s there exists i < j such that $A_i^{(r)} = A_j^{(s)}$. Show that the number of k-tuples is $m \le k!$.
 - (b) [1] Show that the preceding bound is tight for each k.
- 3. (a) [2] Let G = (V, E) be a graph with vertex set V = (^[n]₃) and a pair of sets A, B forming an edge if |A ∩ B| ∈ {0,2}. We showed in class that the Shannon capacity of G satisfies s(G) ≤ n + 1 (and it is also in the Matoušek's book). Show that in fact s(G) ≤ n.

^{*}This homework is from http://www.borisbukh.org/AlgMethods14/hw2.pdf.

21-801: Algebraic Methods in Combinatorics

- (b) [extra credit; I do not know the answer] Is it possible to improve the upper bound on s(G) for some $n \ge 5$?
- 4. [1] For a graph G let R(G) be the minimum dimension of an orthogonal representation of a graph G, i.e., it is the smallest integer m such that there exists a field \mathbb{F} and a map $\phi: V(G) \to \mathbb{F}^m$ satisfying
 - $\langle \phi(v), \phi(v) \rangle \neq 0$,
 - $\langle \phi(v), \phi(u) \rangle = 0$ for $u \not\sim v$.

Show that $6 \leq R(C_5^{\otimes 2}) \leq 9$.

- 5. [2] Suppose [n] is the vertex set of a graph G, and there are functions $f_1, \ldots, f_n \colon X \to \mathbb{F}$ and elements v_1, \ldots, v_n that satisfy
 - $f_i(v_i) \neq 0$ for all i,
 - $f_i(v_j) = 0$ for all i < j that satisfy $i \not \sim j$,

Show that the Shannon capacity of G obeys $s(G) \leq \dim \operatorname{span}\{f_1, \ldots, f_n\}$.